
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0379036A1

SHINet al.

US 20150379036A1

(43) Pub. Date: Dec. 31, 2015

(54)

(71)

(72)

(73)

(21)

(22)

(30)

Jun. 30, 2014

METHOD AND APPARATUS OF
PER-BLOCK-GROUP JOURNALING FOR
ORDERED MODE JOURNALING FILE
SYSTEM

Applicant: RESEARCH & BUSINESS
FOUNDATION SUNGKYUNKWAN
UNIVERSITY, Suwon-si (KR)

Inventors: Dong Kun SHIN, Seoul (KR); Yun Ji
KANG, Suwon-si (KR)

Assignee: RESEARCH & BUSINESS
FOUNDATION SUNGKYUNKWAN
UNIVERSITY, Suwon-si (KR)

Appl. No.: 14/751,583

Filed: Jun. 26, 2015

Foreign Application Priority Data

CORRECTED
DATALIST f

FSYNC CORRECTED f-------- : s is gif i....: --------
COMPOUND

TRANSACTION

(KR) 10-2014-O080942

FILE2

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30165 (2013.01); G06F 17/30227

(2013.01)

(57) ABSTRACT

In accordance with a first exemplary embodiment, there is
provided a computing device. The device includes a memory
equipped with a program operating a file system supporting
ordered mode journaling; and a processor operating the pro
gram stored in the memory. Wherein according to execution
of the program, when an fisync system call for the file stored
in the memory occurs, the processor extracts a block-group
level transaction corresponding to the file from a compound
transaction including the file, records the transaction in a data
area of the memory, and executes journaling of the transaction
in a journal area of the memory.

BGNODE TABLE BGE BLOCKBITMAP
BB BGE INODEBITMAP GROUPESCRIPTOR

TABLE

i --------
FILE 4

as a sess an as a

US 2015/0379036A1

dWW118)||OOT8 #08 DOETI] ETEW | HCIONI #09. DETT]

Patent Application Publication

Patent Application Publication Dec. 31, 2015 Sheet 2 of 6 US 2015/0379036A1

FIG. IB

- - - - Bll
SORAGE FBB8E : D D
DEVICE 3. 3 3 3 4 34:

3. it
*\. * sc, co--

- - - - - - - - - - - - - - r Y

ORNA AREA DAA AREA

FIG 2

COMPUTING DEVICE

PROCESSOR

MEMORY

100

US 2015/0379036A1 Dec. 31, 2015 Sheet 3 of 6 Patent Application Publication

ETEWL ECJONI #08 DETT

• • • •

Z ETIH

£

• • • •

| ETIH

• • • •

CIN(\OCHWOO
8 ETI KONÅS

Patent Application Publication Dec. 31, 2015 Sheet 4 of 6 US 2015/0379036A1

FIG. 3B

3C BEG
Y

SIORAGEE Frise it triplbert
O) X

^ ------------------------- -------------------- N.

JOURNAL AREA DATA AREA

GO

FIG. 4

CORRECTED TRANSACTION BEING
GDT BLOCK EXECUTED

STORED GDT BLOCK) TRANSACTION TO BE
GDT BLOCK TO BESTORED STORED

STORGE DEVICE

JOURNAL AREA DATA AREA

Patent Application Publication Dec. 31, 2015 Sheet 5 of 6 US 2015/0379036A1

FIG. 5

START

OCCURRENCE OF ANFSYNC SYSTEM CALL FOR AFILE TO BE
STORED INA MEMORY

S500

EXTRACTING, FROMA COMPOUNDTRANSACTION
INCLUDING THE FILE TO BESTORED IN THE MEMORY,

A BLOCK-GROUP-LEVEL TRANSACTION RELATED TO THE FILE

S510

RECORDING THE TRANSACTION IN ADATA AREA OF THE
MEMORY S520

EXECUTING UOURNALING OF THE TRANSACTION IN A JOURNAL
AREA OF THE MEMORY S530

DELETING THE TRANSACTION FROM THE COMPOUND
TRANSACTION S540

Patent Application Publication Dec. 31, 2015 Sheet 6 of 6 US 2015/0379036A1

FIG. 6

GENERATING ABLOCK GROUP ACCORDING TO A
PRESET TYPE OF A FILE S600

GENERATING ONE ORMORE SEPARATE BLOCK
GROUPS FOR ALLOCATION OF A FILE, WHICH IS NOT

INCLUDED IN THE PRESET TYPE OF THE FILE

S610

ALLOCATING ABLOCK GROUP OF THE FILE
ACCORDING TO A TYPE OF THE FILE S620

US 2015/0379036A1

METHOD AND APPARATUS OF
PER-BLOCK-GROUP JOURNALING FOR
ORDERED MODE JOURNALING FILE

SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims the benefit of Korean Patent
Application No. 10-2014-0080942 filed on Jun. 30, 2014, the
disclosures of which are incorporated herein by reference.

TECHNICAL FIELD

0002 The embodiments described herein pertain gener
ally to a method and an apparatus of per-block-group jour
naling for an ordered mode journaling file system.

BACKGROUND

0003. An operation system in a common computing
device accesses a storage device and uses a file system to read
and write the file. A file system, which has been recently used
in most computing devices, is EXT4 (extended file system 4).
EXT4 is a file system supporting journaling to guarantee
consistency and maintainability. Journaling is a technique
that can restore the file system fast, when the system is Sud
denly terminated due to occurrence of a system failure, a
supply error or other problems. EXT4 periodically records a
journal log in a journal area, which is a pre-reserved area of
the storage device, in order to execute the journaling.
0004. The journaling method of EXT4 supports a write
back mode, an ordered mode, and a data mode. The ordered
mode is a basic option for the journaling method of EXT4. To
maintain the consistency of the file system, the ordered mode
records only metadata in the journal area after all data that
need to be updated are recorded in the storage device.
0005. When the journaling method is executed, a journal
thread executed in a background is used for data storage
requiring the longest time. As such, long response time result
ing therefrom may not be a problem. However, since an fisync
system call is not executed in a background, the response time
of the journaling may be critical upon the fsync system call.
0006. The fisync system call is a system call function of
Linux. The fisync system call is intended to be guaranteed as
to whether changes in a file designated by a user have been
surely recorded in the storage device. In EXT4, the fisync
system call records all corrected metadata of a compound
transaction in the journal area by using the journaling thread.
In this case, the compound transaction is a group of file
system updates. When a file calculation occurs, EXT4
executes journaling per compound transaction, instead of
executing journaling per single transaction. The compound
transaction may include a file, which is not included in the
fisync system call. If there are significant changes in a file that
has not been requested, the execution time for the fisync
system call may increase.
0007 Conventional inventions to solve this problem are
described below.
0008 Korean Patent Publication No. 10-0981064 (Title of
Invention: “A Method to Maintain Software Raid Consis
tency Using Journaling File System') describes a journaling
method, which updates information by registering a journal
transaction descriptor block, a data block, and a metadata
block in a memory buffer. This method splits a storage area
into a multiple number of block groups, and executes jour

Dec. 31, 2015

naling by using each of the blocks. The block generated in this
invention is stored in a cache, and simultaneously, used to be
stored in a disk during an ordered journaling process. How
ever, since the block generated in this invention is stored in a
cache, and simultaneously, used to be stored in a storage
device during an ordered journaling process, an amount of
metadata and files to be processed at a time is maintained.
Thus, the execution time for the fisync system call is not
reduced.
0009 Korean Patent Publication No. 10-2005-0052016
(Title of Invention: “Method of and apparatus for logging and
restoring the meta data in file system') describes changing
metadata per transaction, and stores a log of the changed
metadata in a global log buffer unit. This method identifies
any change in the metadata stacked in the buffer by using the
metadatalog, and stores the change in a disk. However, since
this method executes journaling per transaction, it cannot
solve the problem of increase of execution time for the fisync
system call resulting from storing unnecessary files when the
fsync system call is executed.
0010. In addition, Korean Patent Publication No.
10-0453228 (Title of Invention: “Journaling and Recovery
Method of Shared Disk File System') describes identifying
any change in metadata stacked in a buffer by using a meta
datalog and storing the change in a storage device. Since this
invention also executes journaling per transaction, execution
time for the fsync system call may increase due to storing of
unnecessary files upon the execution of the fisync system call.

SUMMARY

0011. In view of the foregoing, example embodiments
provide a method and an apparatus of per-block-group jour
naling for a file system supporting ordered mode journaling.
0012 However, the problems sought to be solved by the
present disclosure are not limited to the above description,
and other problems can be clearly understood by those skilled
in the art from the following description.
0013. In accordance with a first exemplary embodiment,
there is provided a computing device. The device includes a
memory equipped with a program operating a file system
Supporting ordered mode journaling; and a processor operat
ing the program stored in the memory. Wherein according to
execution of the program, when an fisync system call for the
file stored in the memory occurs, the processor extracts a
block-group-level transaction corresponding to the file from a
compound transaction including the file, records the transac
tion in a data area of the memory, and executes journaling of
the transaction in a journal area of the memory.
0014. In accordance with a second exemplary embodi
ment, there is provided an ordered modejournaling method of
a file system. The method includes occurring an fisync system
call for a file stored in a memory; extracting a block-group
level transaction corresponding to the file from a compound
transaction including the file, according to the fisync system
call; recording the transaction in a data area of the memory;
and executing journaling of the transaction in a journal area of
the memory.
0015. In accordance with the example embodiments, a
method and an apparatus of per-block-group journaling for a
file system supporting ordered mode journaling can be pro
vided, and as a result, are expected to result in various ripple
effects throughout the relevant businesses.
0016 Upon execution of an fisync system call in the file
system Supporting ordered mode journaling, the example

US 2015/0379036A1

embodiments use only a block-group-level transaction corre
sponding to thefsync system call, and thus, the consistency of
the file system can be maintained. Further, since the example
embodiments can record minimum metadata and data, it is
possible to prevent deterioration of performance of the com
puting device resulting from an application frequently using a
fisync system call.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1A is an illustrative diagramofanfsync system
call processing process using ordered mode journaling in
conventional EXT4.
0018 FIG.1B is an illustrative diagram of an fisync system
call processing process using ordered mode journaling in
conventional EXT4.
0019 FIG. 2 is a configuration diagram schematically
illustrating a computing device in accordance with an
example embodiment.
0020 FIG.3A is an illustrative diagramofanfsync system
call processing process of per-block-group journaling for an
ordered mode journaling file system in accordance with an
example embodiment.
0021 FIG.3B is an illustrative diagram of an fisync system
call processing process of per-block-group journaling for an
ordered mode journaling file system in accordance with an
example embodiment.
0022 FIG. 4 is an illustrative diagram of a group descrip
tortable processing process of per-block-group journaling in
accordance with an example embodiment.
0023 FIG. 5 is a flow chart of a per-block-group journal
ing method for an ordered mode journaling file system in
accordance with an example embodiment.
0024 FIG. 6 is a flow chart of a block group generating
method in accordance with an example embodiment.

DETAILED DESCRIPTION

0025 Hereinafter, example embodiments will be
described in detail with reference to the accompanying draw
ings So that inventive concept may be readily implemented by
those skilled in the art. However, it is to be noted that the
present disclosure is not limited to the example embodiments
but can be realized in various other ways. In the drawings,
certain parts not directly relevant to the description are omit
ted to enhance the clarity of the drawings, and like reference
numerals denote like parts throughout the whole document.
0026. Throughout the whole document, the terms “con
nected to’ or “coupled to are used to designate a connection
or coupling of one element to another element and include
both a case where an element is “directly connected or
coupled to another element and a case where an element is
“electronically connected or coupled to another element via
still another element. Further, the term “comprises or
includes and/or "comprising or including used in the docu
ment means that one or more other components, steps, opera
tions, and/or the existence or addition of elements are not
excluded in addition to the described components, steps,
operations and/or elements.
0027. In describing the example embodiments with refer
ence to the drawings, drawing reference numerals may vary
depending on the drawings, even though they refer to the
same component, and the drawing reference numerals are
described merely for convenience in description. Thus, a
conception, a feature, a function or an effect of each compo

Dec. 31, 2015

nent should not be restrictively constructed by its correspond
ing drawing reference numeral.
0028 First, an fisync system call processing process using
ordered mode journaling in EXT4, which is a conventional
file system, is described with reference to FIG. 1A and FIG.
1B.
(0029 FIG. 1A and FIG.1B is an illustrative diagram of the
fsync system call processing process using ordered mode
journaling in conventional EXT4.
0030 EXT4 is a journaling file system of LINUX. EXT4
periodically stores metadata of a file in a pre-reserved journal
area of an inactive memory, in order to guarantee reliability
and consistency of the file system. In this case, the journal
area is an area pre-reserved in a nonvolatile memory.
0031. The storage device of FIG. 1B includes one journal
area and one data area. For example, the data area may consist
of four block groups indicated as BG1, BG2. BG3, and
BG4. In the compound transaction of FIG. 1A, there are
present eight metadata, for which journaling will be executed.
In addition, in a page cache, there are present data D2, D2,
D3, and D4 for four files, which have not yet been recorded

in the storage device of FIG. 1A.
0032. In this case, the compound transaction may include
metadata such as an inode table, a block bitmap, an inode
bitmap, and a group descriptor table (GDT) for a corrected
file. In addition, the inode table is metadata recording infor
mation of a file, the bitmap table is metadata recording allo
cation of a file, and the block bitmap is metadata recording
data block allocation within a block group.
0033. In FIG. 1A, when an fisync system call for File 3
occurs, the conventional ordered mode journaling calls a
journaling thread and executes journaling for the compound
transaction. In this case, the fisync system call is a calculation
that a user requests to the system in order to be guaranteed that
all corrected data for one file have been recorded in the
storage device. The fisync system call is used to store a file,
which is frequently updated and should be assured to be
stored in the storage device at a certain time, like an XML
setting file of data or applications to be stored in a database.
0034. Unlike general journaling, the fisync system call is
not executed in a background upon execution thereof. That is,
the fisync system call waits until the journaling thread is
called, and all data present in the page cache are stored in the
data area. Thus, the conventional ordered mode journaling of
FIG. 1A waits for the time when all the data D1, D2 and
D4, for File 1. File 2 and File 4, in addition to D3 for
File 3, are stored in the data area. After all the data are
written in the data area, all metadata present in the compound
transaction are recorded in the journal area. Since the con
ventional ordered mode journaling should store even the data
for the files irrelevant to File 3 in the data area, the response
time offsync increases.
0035. In order to solve this problem, the conventional
ordered mode journaling may reduce the time required for
fsync by separating a transaction for a file executing fisync
from the compound transaction and executing journaling
therefor. However, since the metadata present in the com
pound transaction area final version reflecting all corrections,
separating only the transaction for the file executing fisync
from the metadata violates the consistency.
0036. For example, in FIG. 1A and FIG. 1B, File 3 and
File 4 correct an identical block bitmap BB3. Thus, when
anfsync system call for File 3 is executed without update of
File 4. the conventional ordered mode journaling records

US 2015/0379036A1

BB3 of File 4 in the journal area, and thus, the file system
is in the state of inconsistency. That is, to maintain the con
sistency, a method for executing journaling by separating a
block-group-level transaction from the compound transac
tion is necessary.
0037 Next, thefsync system call processing process of the
method of per-block-group journaling for the ordered model
journaling file system in accordance with an example
embodiment is described with reference to FIG. 2 to FIG. 4.
0038 FIG. 2 is a configuration diagram schematically
illustrating a computing device in accordance with an
example embodiment.
0039. With reference to FIG. 2, the computing device 100
in accordance with an example embodiment may include a
memory 120 equipped with a program operating a file system
Supporting ordered mode journaling and a processor 110 that
operates a program stored in a memory.
0040. The computing device 100 may include a general
computer Such as a server, a workstation, a desktop computer
and a laptop computer, and the latest Smart device Such as a
smartphone and a tablet PC.
0041. The memory 130 generally refers to a volatile and
nonvolatile storage device that continuously maintains stored
information even when no supply is Supplied. For example,
the memory 130 may include a NAND flash memory such as
a compact flash (CF) card, a secure digital (SD) card, a
memory stick, a solid-sate drive (SSD), and a microSD card
or a magnetic computer storage device such as a hard disk
drive (HDD).
0042 A program stored in the memory 120 may perform
as an operation system that operates a file system, to which
the example embodiments are applied, or be configured in an
application form equipped with a file system, to which the
example embodiments are applied.
0043. When an fsync system call for a file stored in the
memory 120 occurs, the processor 110 of the computer
device 100 in accordance with an example embodiment may
extract a block-group-level transaction corresponding to the
file from the compound transaction including the file, accord
ing to execution of a program. After the extraction of the
block-group-level transaction, the processor 110 may record
the transaction in the data area of the memory 120, and
execute journaling of the transaction in the journal area of the
memory 120. In this case, the execution of the journaling may
mean to store the transaction in the journal area of the
memory 120.
0044. In addition, the block-group-level transaction may
include at least one file included in a block, in which block
group files are stored, and metadata of the file stored in the
block. In this case, the processor 110 may record the file
included in the transaction in the data area of the memory 120,
according to execution of a program. In addition, the proces
sor 110 may record the metadata included in the transaction in
the journal area of the memory 120.
0045. When an fisync system call for a random file occurs
as in the conventional journaling method, the processor 110
may call the journaling thread to execute journaling and wait
until the execution of the journaling is finished. Thus, the
processor 110 may extract a transaction corresponding to a
file executing fsync from the compound transaction to
execute journaling. Since the processor 110 executes journal
ing only by using the corresponding transaction, it can reduce
response time of an application using an fsync system call,

Dec. 31, 2015

compared to the conventional journaling method that
executes journaling for all corrected files.
0046 FIG.3A and FIG.3B is an illustrative diagram of the
fsync system call processing process of the per-block-group
journaling for the ordered mode journaling file system in
accordance with an example embodiment.
0047. As shown in FIG. 3A and FIG. 3B, the compound
transaction includes metadata reflecting all corrections of
corrected files. Thus, to maintain the consistency, the proces
sor 110 may extract not only metadata for a file executing the
sync system call but also metadata for a file stored in an
identical block from the compound transaction and generate
a block-group-level transaction.
0048. When an fisync system call for File 3 is executed,
the processor 110 may extractablock-group-level transaction
corresponding to File 3 from the compound transaction. In
this case, the block group BG3 including File 3 includes
File 4 together with File 3. Thus, the block-group-level

transaction may include metadata IT3. IB3. BB3 and
IT4 for File 3’ and File 4.
0049. After the extraction of the block-group-level trans
action corresponding to File 3. the processor 110 may store
File 3 and File 4 in BG3 of the data area. In this case, the
metadata IT3, IB3, BB3 and IT4 for File3 and File 4
are stored in the journal area of the memory, and on this basis,
the processor 110 may execute transaction journaling.
0050. In the per-block-group journaling, processing a
group descriptor table shared among multiple block groups is
critical. In the block group descriptor table of the compound
transaction of FIG.3B, “Block Group 2 and Block Group 3
may be corrected together. If the block group descriptor table
is recorded as it is in the journal area, it violates the consis
tency of the file system.
0051. In order to solve this problem, the memory 120 of
the computer device 100 in accordance with an example
embodiment may include a buffer storing the group descrip
tor table of the journal area of the memory 120. The group
descriptor table stored in the buffer may be used to maintain
the consistency of the file system, when the per-block-group
journaling is executed.
0052. Whenanfsync system call occurs, the processor 110
may copy the group descriptor table of the journal area in the
buffer of the memory 120, according to execution of a pro
gram. In addition, when per-block-group journaling for a
transaction is executed, update of the group descriptor table
of the journal area may be executed by using the group
descriptor table copied in the buffer.
0053 A group descriptor table processing process in
accordance with an example embodiment is described with
reference to the example of FIG. 4.
0054 FIG. 4 is an illustrative diagram of a group descrip
tortable processing process of the per-block-group journal
ing in accordance with an example embodiment.
0055. In FIG.4, GDT means the group descriptor table.
The example of FIG. 4 has a group descriptor table block
stored in the journal area of the memory 120 and a group
descriptortable block, in which Group 1 and Group 2 have
been corrected. In this case, directly recording the corrected
group descriptor table block in the journal area may violate
the consistency. Thus, the processor 110 may reflect only
updated information in the block-group-level transaction and
record the information in the journal area. If Group 1 in the
block-group-level transaction has been updated, the group
descriptor table block to be stored in the journal area may be

US 2015/0379036A1

the group descriptortable block, in which only information of
Group 1 in the previously stored group descriptor table
block has been upgraded. The processor 110 may reflect the
group descriptor table block to generate a block-group-level
transaction, and store the transaction in the journal area.
0056. The compound transaction of the memory 120 in
accordance with an example embodiment may include first
and second files located in different data area blocks. In this
case, when an fisync system call for the first file occurs, the
processor 110 may extract the first file and a first block-group
level transaction corresponding to the first file from the com
pound transaction, according to execution of a program. After
the extraction of the first block-group-level transaction, the
processor 110 records the first file in a first block group of the
data area of the memory 120. In addition, the processor 110
may execute journaling of the first block-group-level trans
action in the journal area of the memory 120. After the execu
tion of the journaling, the processor 110 may delete the first
block-group level transaction from the compound transac
tion.
0057. In addition, after the execution of the journaling for
the first block-group-level transaction, when journaling for
the compound transaction is executed by using the file sys
tem, the processor 110 may store the second file in a second
block group of the data area, and execute the journaling of the
compound transaction in the journaling area.
0058 Meanwhile, the processor 110 for executing the
block-group-level transaction may generate a block group
according to a preset type of a file. In this case, the preset type
of the file may be a database file having extensions of db.
db-journal. ‘db-wal and “db-shm, or an XML file storing
data or setting values. In addition, the preset type of the file
may be a type of a file preset according to a user of the
computing device 100 or needs from the computing device
1OO.
0059. The preset type of the file may be one or more files
that can be generated by a preset system or application. For
example, the preset type of the file may be set to data and a
setting file generated by a certain database management sys
tem (DBMS).
0060. In addition, the processor 110 may generate one or
more separate block groups for allocating a file, which is not
included in the preset type of the file.
0061. When a file is generated or renew of a file occurs, the
processor 110 may allocate a block group according to a type
of the file. For example, if a newly generated file is included
in the preset type of the file, the processor 110 may allocate
the generated file to a block group corresponding to the type
of the generated file. In addition, if the newly generated file is
not included in the preset type of the file, the processor 110
may allocate the generated file to any one of the one or more
separate block groups for allocating a file, which is not
included in the preset type of the file.
0062. When an fisync system call for the file allocated to
the block group occurs, the processor 110 may extract a
block-group-level transaction from the block group, to which
the file has been allocated, and execute journaling therefor.
Since a transaction may be executed in a block group unit
allocated in advance according to a type of a file, the proces
Sor 110 may separate only a relevant transaction upon an
fisync system call, and execute journaling therefor.
0063) Next, the method of the per-block-group journaling
for the ordered mode journaling file system of the computer
device 100 is described with reference to FIG. 5 and FIG. 6.

Dec. 31, 2015

0064 FIG.5 is a flow chart of the method of the per-block
group journaling for the ordered mode journaling file system
in accordance with an example embodiment.
0065. When an fsync system call for a file stored in the
memory 120 occurs (S500), the computer device 100 may
extract, from the compound transaction including the file
stored in the memory 120, a block-group-level transaction
corresponding to the file, according to the fisync system call
(S510).
0066. After the extraction of the transaction, the computer
device 100 may record the transaction in the data area of the
memory (S520), and execute journaling of the transaction in
the journal area (S530). Since the computer device 100
executes the journaling by using only the corresponding
block-group-level transaction upon the execution of thefsync
system call, it can reduce time required to execute the jour
naling, compared to the conventional ordered mode journal
1ng.
0067. In addition, the block-group-level transaction corre
sponding to the file may include one or more files included in
a block, in which files are stored, and metadata of the file
stored in the block, as described above with reference to FIG.
2. In this case, the computer device 100 uses the file included
in the transaction to record the transaction in the data area of
the memory 120 (S520). The computer device 100 may also
use the metadata included in the transaction to execute jour
naling of the transaction in the journal area of the memory 120
(S530).
0068. After the execution of the journaling for the block
group-level transaction, the computer device 100 may delete
the transaction from the compound transaction (S540).
0069. When an fisync system call for the file stored in the
memory 120 occurs (S500), the computer device 100 may
copy the group descriptor table of the journal area in the
buffer of the memory 120. In addition, in order to execute the
transaction in the journal area of the memory 120 (S530), the
computer device 100 may execute update for the block group
by using the group descriptor table copied in the buffer. The
computer device 100 may also update the group descriptor
table of the journal area by using the group descriptor table of
the buffer.
0070 The group descriptor table stored in the buffer may
be used to maintain the consistency when the per-block-group
journaling is executed, as described above.
0071. Meanwhile, with respect to the compound transac
tion including the first and second files located in the blocks of
the different data areas, whenanfsync system call for the first
file occurs, the computer device 100 may extract the first file
and a block-group-level transaction corresponding to the first
file from the compound transaction, according to the fisync
system call. The computer device 100 may record the first
block-group-level transaction in the data area of the memory
and execute journaling of the transaction in the journal area of
the memory. When the journaling is completed, the computer
device 100 may delete the first block-group-level transaction
from the compound transaction.
(0072 For further description with reference to, for
example, FIG. 3, in the ordered mode journaling method of
the file system, the first file may be File3, and the second file
may be File 1. Whenan fisync system call for File 3, which
is the first file, occurs, the computer device 100 may extract
File 3 and a first block-group-level transaction for the block
group BG3 including File:3 from the compound transaction,
according to the fisync system call. In this case, the extracted

US 2015/0379036A1

first block-group-level transaction may be File 3, File 4
and metadata for each of the files. The computer device 100
may execute journaling by using the extracted first block
group-level transaction. When the journaling is completed,
the computer device 100 may delete the first block-group
level transaction from the compound transaction. That is,
only File 1. File 2 and metadata for each of the files are left
in the compound transaction at the time that the journaling is
completed.
0073. In addition, the computer device 100 may execute
journaling for the compound transaction. In this case, the
computer device 100 may store the second file in the second
block group of the data area to execute the journaling for the
compound transaction. The computer device 100 may also
execute the journaling of the compound transaction in the
journal area of the memory.
0074 Returning to the example of FIG. 3, the computer
device 100 may execute journaling for the compound trans
action, from which the first-block-group-level transaction has
been deleted. In this case, File 1 as the second file may be
stored in the second block group BG1. In addition, the
metadata of the second file may be stored in the journal area
of the storage device.
0075 FIG. 6 is a flow chart of a block group generating
method in accordance with an example embodiment.
0076 Meanwhile, the computing device 100 may gener
ate a block group according to a preset type of a file, in order
to execute the block-group-level transaction (S600). In this
case, the preset type of the file may be a file storing data such
as a database file or an XML file.

0077. The computing device 110 may generate one or
more separate block groups to allocate a file, which is not
included in the preset type of the file, in addition to a block
group according to the preset type of the file (S610).
0078. When a file is generated or renewal of a file occurs,
the computing device 100 may allocate a block group accord
ing to a type of the file (S620). For example, if a newly
generated file is included in the preset type of the file, the
processor 110 may allocate the generated file to a block group
corresponding to the type of the generated file. In addition, if
the newly generated file is not included in the preset type of
the file, the processor 110 may allocate the generated file to
any one of the one or more separate block groups for allocat
ing a file, which is not included in the present type of the file.
0079. In addition, when an fisync system call for the file
allocated to the block group occurs, the computing device 100
may extract a block-group-level transaction from the block
group, to which the file has been allocated, and execute jour
naling therefor. Since a transaction may be executed in a
block group unit allocated in advance according to a type of a
file, the computing device 100 may separate only a relevant
transaction upon an fisync system call, and execute journaling
therefor.

0080 Since the method and the apparatus 100 of the per
block-group journaling for the ordered mode journaling file
system in accordance with an example embodiment executes
journaling for a block-group-level transaction corresponding
to a corresponding file upon an fisync system call, it can
improve a processing speed of the fisync system call, and
maintain the consistency of the file system. Further, since the
method and the apparatus 100 of the per-block-group jour
naling for the ordered modejournaling file system may delete
the processed transaction from the compound transaction, it

Dec. 31, 2015

can process files and metadata, which have not been pro
cessed at the time of common journaling and remained within
the compound transaction.
I0081 Example embodiments can be embodied in a stor
age medium including instruction codes executable by a com
puter or processor Such as a program module executed by the
computer or processor. A computer readable medium can be
any usable medium which can be accessed by the computer
and includes all volatile/nonvolatile and removable/non-re
movable media. Further, the computer readable medium may
include all computer storage and communication media. The
computer storage medium includes all volatile/nonvolatile
and removable/non-removable media embodied by a certain
method or technology for storing information Such as com
puter readable instruction code, a data structure, a program
module or other data. The communication medium typically
includes the computer readable instruction code, the data
structure, the program module, or other data of a modulated
data signal Such as a carrier wave, or other transmission
mechanism, and includes information transmission medi

S.

I0082. The method and the system of the example embodi
ments have been described in relation to the certain examples.
However, the components or parts or all the operations of the
method and the system may be embodied using a computer
system having universally used hardware architecture.
I0083. The above description of the example embodiments
is provided for the purpose of illustration, and it would be
understood by those skilled in the art that various changes and
modifications may be made without changing technical con
ception and essential features of the example embodiments.
Thus, it is clear that the above-described example embodi
ments are illustrative in all aspects and do not limit the present
disclosure. For example, each component described to be of a
single type can be implemented in a distributed manner. Like
wise, components described to be distributed can be imple
mented in a combined manner.
I0084. The scope of the inventive concept is defined by the
following claims and their equivalents rather than by the
detailed description of the example embodiments. It shall be
understood that all modifications and embodiments con
ceived from the meaning and scope of the claims and their
equivalents are included in the scope of the inventive concept.

1. A computing device, comprising:
a memory equipped with a program operating a file system

Supporting ordered mode journaling; and
a processor operating the program Stored in the memory,
wherein according to execution of the program, when an

fsync system call for the file stored in the memory
occurs, the processor extracts a block-group-level trans
action corresponding to the file from a compound trans
action including the file, records the transaction in a data
area of the memory, and stores the transaction in a jour
nal area of the memory.

2. The computing device of claim 1,
wherein the block-group-level transaction comprises one

or more files included in a block, in which the file is
stored, and metadata of the file stored in the block, and

the processor records the file included in the transaction to
the data area, and the metadata included in the transac
tion to the journal area.

3. The computing device of claim 1,
wherein after the storing of the transaction, the processor

deletes the transaction from the compound transaction.

US 2015/0379036A1

4. The computing device of claim 1,
wherein the memory comprises a buffer that stores a group

descriptor table of the journal area, and
according to execution of the program, when an fisync

system call occurs, the processor copies the group
descriptor table of the journal area in the buffer, per
forms update for the block group by using the group
descriptor table copied in the buffer, and updates the
group descriptor table of the journal area by using the
group descriptor table of the buffer, when storing of the
transaction.

5. The computing device of claim 1,
wherein the compound transaction of the memory com

prises first and second files located in blocks of different
data areas, and

when an fisync system call for the first file occurs, the
processor extracts the first file and a first block-group
level transaction corresponding to the first file from the
compound transaction, records the first file in a first bock
group of the data area of the memory, Stored the first
block-group-level transaction in the journal area of the
memory, and deletes the first block-group-level transac
tion from the compound transaction.

6. The computing device of claim 5,
wherein when journaling for the compound transaction is

executed by using the file system, the processor Stores
the second file in a second block group of the data area,
and stores of the compound transaction in the journal
aca.

7. The computing device of claim 1,
wherein the processor generates a block group according to

a preset type of a file,
ifa type of the file corresponds to the preset type of the file,

the processor allocates the file to a block group corre
sponding to the type of the file.

8. The computing device of claim 7.
wherein the preset type of the file comprises at least one of

a database file and an XML file.
9. An ordered mode journaling method of a file system,

comprising:
extracting a block-group-level transaction corresponding

to the file from a compound transaction including the
file, according to the fisync system call for a file stored in
a memory;

recording the transaction in a data area of the memory; and
storing the transaction in a journal area of the memory.
10. The ordered mode journaling method of a file system of

claim 9,
wherein the block-group-level transaction corresponding

to the file comprises one or more files included in a
block, in which the file is stored, and metadata of the file
stored in the block,

Dec. 31, 2015

the step of recording of the transaction in the data area of
the memory uses the files included in the transaction,
and

the step of storing the transaction in the journal area of the
memory uses the metadata included in the transaction.

11. The ordered mode journaling method of a file system of
claim 9, further comprising

deleting the transaction from the compound transaction,
after the storing the transaction.

12. The ordered mode journaling method of a file system of
claim 9, further comprising

copying a group descriptor table of the journal area in a
buffer of the memory, and

the step of storing the transaction in the journal area of the
memory comprises:

executing update for the block group by using the group
descriptor table copied in the buffer; and

updating the group descriptor table of the journal area by
using the group descriptor table of the buffer.

13. The ordered mode journaling method of a file system of
claim 9,

wherein with respect to the compound transaction includ
ing first and second files located in blocks of different
data areas, when an fisync system call for the first file
occurs, the ordered mode journaling method of the file
system extracts the first file and a first block-group-level
transaction corresponding to the first file from the com
pound transaction, records the first block-group-level
transaction in the data area of the memory, stored of the
transaction in the journal area of the memory, and
deletes the first block-group-level transaction from the
compound transaction.

14. The ordered mode journaling method of a file system of
claim 13, further comprising

executing of the journaling for the compound transaction,
and

the step of executing of the journaling for the compound
transaction stores the second file in a second block group
of the data area, and

stores the compound transaction in the journal area of the
memory.

15. The ordered mode journaling method of a file system of
claim 9, further comprising:

generating a block group according to a preset type of a file;
and

allocating a file, if the file is included in the preset type of
the file, in a block group corresponding to a type of the
file.

