
fsync-aware Multi-buffer FTL for Improving the
fsync Latency with Open-Channel SSDs

Somm Kim1, Yunji Kang2, and Dongkun Shin1
1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea

2Department of IT Convergence, Sungkyunkwan University, Suwon, Korea
Email: {sommkim, oso41, dongkun}@skku.edu

Abstract—Open-Channel SSDs are widely studied because
of their advantages such as predictable latency, efficient data
placement, and I/O scheduling. Currently, the Linux kernel
includes pblk (The Physical Block Device), a host FTL that
supports Open-Channel SSDs. In addition, there are recent
studies that expand the single-threaded architecture of pblk
to multi-threaded architecture: MT-FTL and QBLK. However,
both pblk and recent studies were designed without considering
fsync latency. However, since the fsync system call is performed
synchronously, has a great effect on the performance of the
system. In this paper, we propose FA-FTL, which is a host
FTL considering fsync latency. Experiments show that FA-FTL
is 141% higher than pblk and 119% higher than MT-FTL.

Index Terms—Solid State Drives, Flash Translation Layer,
Open-Channel SSDs, Host FTL, fsync, FLUSH Command

I. INTRODUCTION

Open-Channel SSDs [1] are a new type of Solid State Drives
(SSDs) in which the Flash Translation Layer (FTL) is present
on the host. It provides advantages such as predictable latency,
efficient data placement and I/O scheduling that cannot pro-
vided by firmware based FTL. Linux kernel version 4.12 and
later provides a host FTL called pblk. Pblk consists of a write
buffer and a writer thread. The write buffer is used to buffer
write requests, and the writer thread is used to transfer write
requests to the storage in the write buffer. MT-FTL [3] is a
host FTL that improves the performance bottleneck caused
by pblk’s single-threaded architecture. MT-FTL has a write
buffer and a writer thread for each core. QBLK [6] is also
a host FTL that adopts a multi-threaded architecture instead
of a single-threaded architecture. In addition, they applied
the channel-based address management instead of line-based
address management, and applied lock-free mapping table
structure and fine-grained draining.

Although overall I/O throughput is improved in the recent
studies, the fsync latency is not considered. Because the fsync
system call operates synchronously, it has a significant impact
on system performance. We find that there is a point in the
design of the existing host FTLs to improve fsync latency.
In the existing host FTLs, all write buffers should be flushed
during fsync, since the fsync-related data blocks can exist at
any write buffer. All write buffers contain data blocks that are
not related to fsync, making fsync latency longer. Therefore,
in this paper, we adopt a fsync-dedicated buffer to flush only
fsync-related data blocks during fsync.

978-1-7281-3854-1/19/$31.00 ©2019 IEEE

(a) MT-FTL (b) FA-FTL

Fig. 1: Comparison of flushing during fsync

II. FA-FTL: FSYNC-AWARE HOST-LEVEL FTL

A. Design

FA-FTL uses fsync-aware write buffers to buffer fsync-
related data blocks. When the fsync system call is invoked
over the threshold, FA-FTL regards the file as fsynced file
and maps it to a certain fsync-aware write buffer. When it
receives a write request, it checks the inode structure of the
write request. We added a variable (i_nrb) to the inode
structure that indicates whether the file is mapped to a certain
fsync-aware write buffer. If the write request is for a fsynced
file, it is inserted into a dedicated fsync-aware write buffer.
Otherwise, the write request is inserted into a normal write
buffer. This ensures that fsync-related data blocks exist only in
a dedicated fsync-aware write buffer. Fig. 1 shows the buffers
that should be flushed during fsync in MT-FTL and FA-FTL.
For MT-FTL, the buffer as many as the number of cores should
be flushed, but for FA-FTL, only one fsync-aware write buffer
should be flushed.

In addition, the iJournaling technique [4] is used to ensure
that journaling data is inserted into the same write buffer as
normal data. In the compound transaction journaling of EXT4,
it is impossible to distinguish the write buffer according to the
inode, so all write buffers should be flushed. Here, fsync-
aware write buffers are arbitrarily generated as many as the

Fig. 2: CDF of fsync latencies

number of cores. A study on the proper number of fsync-aware
write buffers according to the number of cores and workloads,
and a technique for efficiently sharing a limited number of
fsync-aware write buffers with fsynced files will be left as
future works.

B. Alternative Design

Dedicated normal write buffer for fsynced file: This
technique uses normal write buffer for buffering fsync-related
data blocks. Instead, fsync-related data blocks are inserted
only one normal write buffer. So it does not require additional
memory. However, the dedicated normal write buffer to which
the fsynced file is mapped includes not only the fsync-related
data blocks, but also the data blocks for the other file and the
asynchronous data blocks.

Fsync-aware write buffer per fsynced file: This technique
dynamically allocates the fsync-aware write buffer per fsynced
file. Although this technique consumes more memory than
other techniques, but fsync latency is optimal because it only
flushes fsync-related data blocks during fsync. However, the
cost of dynamic allocation and deallocation has a negative
impact on system performance.

III. EVALUATION

A. Experimental Setup

We emulated the Guest OS and OC-SSD using the qemu-
nvme emulator [2]. Guest OS emulation environment is as
follows: 4 cores, 16GB DRAM, Ubuntu 16.04.3, Linux kernel
4.13.0-rc2. The OC-SSD emulation environment is as follows:
16 LUNs, 4 planes, 4GB block, 16KB page, 4KB sector.

All experiments were performed with iJournaling. The
application scenarios used are as follows: Four threads write
2GB each, and four threads write 400KB each and then call
the fsync system call.

B. Experimental Results

Fig. 2 shows a CDF representation of the fsync latencies
of pblk, MT-FTL, FA-FTL, and RFLUSH [5]. MT-FTL has
improved fsync latencies over pblk due to multiple write

(a) Average latency (b) 95% tail latency

Fig. 3: Comparison of fsync latency

buffer and writer thread. FA-FTL flushes only one fsync-
aware write buffer during fsync, resulting in fewer flush
commands than MT-FTL. Fig. 3a shows that FA-FTL improves
the fsync latency by 141% over pblk and 119% over MT-
FTL. In addition, RFLUSH also improved fsync latency by
searching and flushing only fsync-related data blocks during
fsync. However, Fig. 3b shows that the 95% tail latency of
RFLUSH is about 12 times that of FA-FTL. In the RFLUSH,
fsync-related data blocks may exist in different write buffers.
Therefore, more flush commands may occur than FA-FTL
because the write request in different write buffers does not
include in a single flush command.

IV. CONCLUSION

The proposed host FTL (FA-FTL) uses fsync-dedicated
write buffer to improve the fsync latency over existing host
FTLs. In existing host FTLs, all write buffers should be flushed
to storage during fsync. FA-FTL flushes only fsync-aware
write buffer mapped to fsynced file during fsync. Therefore,
fsync latencies are improved because it flushes less data blocks
which not related to fsync.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. 2016R1A2B2008672)

REFERENCES

[1] Bjørling, Matias, Javier González, and Philippe Bonnet. ”LightNVM:
The Linux Open-Channel SSD Subsystem.” 15th USENIX Conference
on File and Storage Technologies (FAST 17). 2017.

[2] OpenChannelSSD. “qemu-nvme,” https://github.com/OpenChannelSSD/
qemu-nvme. 2019.

[3] Jhin, Jhuyeong, Hyukjoong Kim, and Dongkun Shin. ”Optimizing
Host-level Flash Translation Layer with Considering Storage Stack of
Host Systems.” Proceedings of the 12th International Conference on
Ubiquitous Information Management and Communication. ACM, 2018.

[4] Park, Daejun, and Dongkun Shin. ”iJournaling: Fine-grained journaling
for improving the latency of fsync system call.” 2017 USENIX Annual
Technical Conference (USENIXATC 17). 2017.

[5] Yeon, Jeseong, et al. ”RFLUSH: Rethink the Flush.” 16th USENIX
Conference on File and Storage Technologies (FAST 18). 2018.

[6] H. Qin, D. Feng, W. Tong, J. Liu and Y. Zhao, ”QBLK: Towards
Fully Exploiting the Parallelism of Open-Channel SSDs,” 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), Florence,
Italy, 2019, pp. 1064-1069.

