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Abstract 
 

To reduce the write amplification factor (WAF) 

and to improve the performance of flash memory 

SSDs, the multi-stream SSD (MS-SSD) has been 

recently proposed, which writes different streams 

into separate flash memory blocks. The previous 

studies on MS-SSDs focused on only how to divide 

user requests into different streams assuming that 

MS-SSDs support a fixed number of streams.  

In this paper, we introduce a dynamic stream 

number adaptation technique, called DStream, which 

can improve the performance of MS-SSDs. By 

adjusting the number of streams adaptively according 

to the workload with k-means clustering, the 

remaining memory resources can be used for the map 

table cache to improve SSD performance. 

Experiments based on MS-SSD simulator show that 

DStream reduces cache miss rates by up to 82% and 

the number of flash memory I/Os by 24%. 

 

Keywords: SSD, Multi-stream, k-means clustering, 

FTL. 

 

1. Introduction 
 

Solid state drives (SSDs) are rapidly replacing 

hard disk drives (HDDs) with low latency and high-

throughput benefits and are being used in a variety of 

applications. Because NAND flash memory has 

special features, a firmware called flash translation 

layer (FTL) is embedded in SSDs. The FTL allows 

users to use the legacy block interface without any 

compatibility problems by logical to physical address 

translation. Also, FTL selects the victim block 

through garbage collection (GC) when insufficient 

free space, moves the valid page of the victim block 

to the free space. GC is an essential function of FTL. 

However, GC generates additional writes on the 

device in addition to the writes requested by the host 

making the write amplification factor (WAF) to be 

large. Therefore, GC reduces not only the overall 

system's performance but also the life span of SSD.  

Figure 1. The number of metadata and GC I/Os 

observed as stream increase in Virt workload. 

 

Many GC-related studies [1, 2] have been 

introduced to address this. In particular, the MS-

SSDs that support stream isolation [3] proposed. 

Since then, several works announced with stream 

management techniques [4, 5, 6, 7]. All the previous 

work has focused on allocating streams to improve 

performance and reduce GC costs. According to the 

current SCSI / SAS [13] and NVMe [14] 

specifications, the stream identifiers (IDs) are in the 

range 1 to 65535. However, it is hard to support a 

large number of streams due to the hardware resource 

limitation in SSD. Hence, the number of streams 

supported by the device is not large in commercial 

SSDs [3, 4]. We propose to adjust the number of 

streams according to workload change and utilize the 

saved resource to improve I/O performance. We first 

observed the number of flash memory I/Os at 

different numbers of available streams with an SSD 

simulator using DFTL [8].  

Figure 1 shows the number of metadata (Meta) 

and GC I/Os while increasing the number of streams 

from 1 to 16 with the SSD simulator (See section 

4.1). As the number of streams increases, the amount 

of GC decreases. In contrast, metadata I/O grow. 

After all, we can see that the total number of flash 

memory I/Os are increasing. Using a large number of 

streams within a limited resource reduces cache 

memory. From the trade-off relationship between the 

number of streams and cache memory, we can 



optimize the efficiency of memory usages explicitly 

changing the amount of memory for multi-streams.  

Full-page mapping FTL include all mapping 

information that indicates the logical page number 

(LPN) to the physical page number (PPN). However, 

DFTL reloads mapping information to the cache 

when the cache miss occurs during the read or write 

processing. If the stream increase within a limited 

resource, more memory is needed to store user data 

(see section 2.2). This tendency motivates that we 

can optimize performance by adjusting the cache 

memory size of DFTL. 

The rest of this paper is organized as follows. We 

describe the background and related work in section 

2. Section 3 gives the detail of DStream and explains 

our technique. Section 4 shows the evaluation results, 

and we will conclude in Section 5. 

 

2. Background and Related work 
 

2.1. Multi-streamed SSD: In conventional SSDs 

(i.e., single stream SSD), the order of the writes 

decides by order of host request. In contrast, MS-

SSD [3] can allocate data with similar lifetimes to the 

same stream IDs when it receives a write request 

from the host. As a result, when data with similar 

lifetimes collect in the same block, GC costs (i.e., 

WAF) are reduced. Also, this behavior can improve 

SSD performance. 

 

2.2. NAND flash: NAND flash can divide into two 

types: single-level cell (SLC) and multi-level cell 

(MLC). SLC stores one bit per cell; however, MLC 

stores more than two bits. Recently, triple-level cell 

(TLC) is mostly used which is an MLC flash memory 

capable of storing three bits in storage systems. Also, 

quad-level cell (QLC) flash memory that can store 

four bits is also emerging. As such, the number of 

bits per cell tends to grow. 

 Figure 2 (a) shows the reprogram method that is 

sent in three steps at single page granularity, figure 2 

(b) is an example of HSP [10]. In the case of the HSP 

method, programming complete in one step by 

sending three pages. The HSP method is faster than 

the 3-step reprogramming method. Also, it consumes 

less power. We emulate TLC NAND flash memory 

using HSP in MS-SSD simulator. Therefore, we 

collect three pages for user data per stream. 

 

2.3. Related work: Recently, research using SSDs 

supporting multi-stream functions proposed actively. 

AutoStream [4] introduces SFR (Sequentiality 

Frequency Recency), and MQ (Multi-Queue) to 

automatically assign stream IDs based on data 

temperature. PC stream [6] uses the program context 

to allocate the stream IDs, and FStream [7] manage 

the stream IDs at the file system level. vStream [5] 

supports more virtual streams than physical streams. 

To classify virtual streams as physical streams, they 

use the k-means clustering method. All previous 

works focus on stream IDs allocation. 

 

3. DStream 
 

In this section, we introduce DStream which adjusts 

the number of streams adaptively using k-means 

clustering. Consequently, we utilize extra memory 

resources to the cache of DFTL. 

 

3.1. Clustering: For assigning stream IDs, we use k-

means clustering [9]. The value of k is the number of 

physical streams (Pstream). We define logical stream 

(Lstream) which is N-partitioned stream for LBA [4]. 

The Lstream can be considered similar to the virtual 

stream [5]. We classify Lstreams which have similar 

valid bitmap update count into the same Pstream. 

Thus, we maintain a bitmap data structure for 

managing the validity of pages. If the host overwrites 

the same LPN, the bitmap corresponding to the 

previous recorded PPN clear, and the valid bitmap 

update count is added by one. Since only update 

count is added based on the valid bitmap data 

structure in FTL, we use less resource consumption 

than vStream. 

The FTL collects valid bitmap update counts 

when performing a certain amount of write requests, 

equal to a timestamp. We define one timestamp as 

the total size of the page in the same block. The 

timestamp is configurable according to the hardware 

(i.e., NAND flash and SSD) or workload. As 

mentioned above, the previously set valid bitmap 

clear when the host overwrites the LPN for each 

Lstream. We classify a stream as 'hot' Lstream when 

there are many update counts, and 'cold' Lstream, if 

there are a fewer update relatively. We perform k-

means clustering based on the update count of 

Lstream to calculate centroid. 

 
 

Figure 2. Conventional 3-step Reprogram method 

and HSP used in MLC NAND flash. 

 



3.2. Adaptive resizing stream: In k-means 

clustering related research, a method of determining 

k value has proposed several times. We introduce the 

technique that bases on adaptive k-means clustering 

algorithm [11]. This algorithm, which we reference, 

calculates the distance between each cluster and 

defines the minimum distance as Dmin. Also, the 

nearest cluster is defined as Cm1, Cm2. The k values 

will adjust according to Dmin, Cm1, and Cm2. These 

two closest clusters will be merged when the distance 

of the Dmin is less than the distance of the element 

from the nearest cluster. After that, the un-clustered 

elements are assigned to the empty cluster, creating a 

new cluster. The algorithm recalculates the Dmin, Cm1, 

and Cm2 again. We employ the same method to 

reduce k-value, but the technique used to increase is 

different. The DStream technique is as follows: 

 

1. Compute each Element (i.e., Lstream) Ei and the 

centroid distance of each cluster for every 

timestamp, and assign it to the closest cluster 

and update the Dmin, Cm1, Cm1, and centroid. 

2. If the distance between Ei and the centroid is 

great than Dmin, reduce the k value by merging 

Cm1 and Cm2. 

3. If the distance between the Ei and the center is 

less than Dmin, increase the k value by setting the 

mean value of the two hot clusters to the 

centroid of the empty cluster. It makes hot 

streams are to classify into more clusters. 

 

In order to reduce the cost of computation, we 

update cluster at every one timestamp lazily. As we 

mentioned previously, the number of Pstream equals 

the number of k. Therefore, we change the memory 

size in the cache map in DFTL when the number of k 

increases or decreases. Hence, to manage cache entry, 

the FTL maintains two lists that manage free pool 

and cache entry. As the number of k changes, we 

remove memory from the cache entry or add it to the 

free pool. We use LRU (Least Recently Used) 

replacement policy to evict entries. 

 

4. Evaluation 
 

4.1. Experimental Setup: To evaluate DStream, 

we implement MS-SSD simulator that providing the 

total capacity of 16GB with a 28% over-provisioning 

area based on TLC NAND flash memory. The SSD 

configuration consists of two channels (c = 2), one 

way (w = 1), two planes (p = 2), two logical pages (l 

= 2), 8KB page TLC (n=3) with up to 16 physical 

streams and up to 200 partitioned logical streams. 

Therefore, the buffer size is 192 KB per stream (c * 

w * p * l * 8 KB * n). The full-page mapping FTL 

needs 16MB of memory to cover 16GB capacity. We 

assume DFTL's cache size as 4MB. 

We observed the impact of DStream on a variety 

of workload changes during the evaluation. Thus, we 

run each workload [15] sequentially of MSR (proj_0, 

rsrch_0, src2_0, stg_0, usr_0) and FIU (online, 

webmail+online, webresearch, webusers, webmail). 

Also, we set up the virtual environment running 

rockDB (append random, overwrite) and Filebench 

(webserver, oltp) benchmarks at the same time and 

extract workload by Blktrace [12]. We sequentially 

write the user address space once before running the 

target workload to achieve stable results. 

 

4.2. Simulator Result: Figure 3 (a), (b), and (c) 

shows the change in the number of streams and the 

memory size while performing various workload with 

DStream. The X-axis in Figure 3 represents the 

timestamp. The number of streams shows sharply 

decrease since it starts with 16 streams at the 

beginning. We can see that the number of streams 

and cache size changes adaptively depending on the 

workload. While FIU and MSR, which have 

relatively less workload variation than Virt, maintain 

a stable number of streams. However, Virt 

experiment results show significant changes with the 

timestamp increase. 

 

 

 
Figure 3. Effect of stream count and cache size.  



Figure 4 illustrates the comparison of flash 

memory I/Os consisting of GC and metadata I/Os. 

The results normalized to 16 streams. According to 

the Virt workload result, metadata I/Os are reduced 

by 82%, FIU by 39% and MSR by 70% compared to 

16 streams. The amount of GC I/Os increased by 

25% for Virt, 31% for FIU, and 8% for MSR. 

Overall, Virt shows a 6% decrease, FIU 10%, and 

MSR 24% in the number of flash memory I/Os. 

Table 1 shows the cache miss rate for each workload. 

We can observe that the cache miss rate reduced by 

82%, 36%, and 67% for Virt, FIU, and MSR 

workload respectively compared to 16 streams. 

 

Table 1: Cache miss rate (%) 

 Virt FIU MSR 

16 streams 0.77 0.05 0.21 

DStream 0.13 0.03 0.07 

 

5. Conclusion 
 

In this work, we propose DStream that find the 

number of streams adaptively in MS-SSDs. The 

amount of flash memory I/Os are reduced using the 

resource obtained by changing the stream adaptively. 

The experiment results show that the number of flash 

memory I/Os reduce up to 24% and cache miss rates 

decrease up to 82%, depending on the workloads. As 

future work, we plan to implement the DStream on a 

real target SSD. 
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Figure 4. Comparison of the normalized number 

of flash memory I/Os 

 


