
DStream: Dynamic Memory Resizing for Multi-Streamed SSDs

Sangwoo Lim†‡, Dongkun Shin†

†Sungkyunkwan University, South Korea

‡ Memory Division, Samsung Electronics Co., South Korea

E-mail: {ssm17.lim, dongkun}@skku.edu

Abstract

To reduce the write amplification factor (WAF)

and to improve the performance of flash memory

SSDs, the multi-stream SSD (MS-SSD) has been

recently proposed, which writes different streams

into separate flash memory blocks. The previous

studies on MS-SSDs focused on only how to divide

user requests into different streams assuming that

MS-SSDs support a fixed number of streams.

In this paper, we introduce a dynamic stream

number adaptation technique, called DStream, which

can improve the performance of MS-SSDs. By

adjusting the number of streams adaptively according

to the workload with k-means clustering, the

remaining memory resources can be used for the map

table cache to improve SSD performance.

Experiments based on MS-SSD simulator show that

DStream reduces cache miss rates by up to 82% and

the number of flash memory I/Os by 24%.

Keywords: SSD, Multi-stream, k-means clustering,

FTL.

1. Introduction

Solid state drives (SSDs) are rapidly replacing

hard disk drives (HDDs) with low latency and high-

throughput benefits and are being used in a variety of

applications. Because NAND flash memory has

special features, a firmware called flash translation

layer (FTL) is embedded in SSDs. The FTL allows

users to use the legacy block interface without any

compatibility problems by logical to physical address

translation. Also, FTL selects the victim block

through garbage collection (GC) when insufficient

free space, moves the valid page of the victim block

to the free space. GC is an essential function of FTL.

However, GC generates additional writes on the

device in addition to the writes requested by the host

making the write amplification factor (WAF) to be

large. Therefore, GC reduces not only the overall

system's performance but also the life span of SSD.

Figure 1. The number of metadata and GC I/Os

observed as stream increase in Virt workload.

Many GC-related studies [1, 2] have been

introduced to address this. In particular, the MS-

SSDs that support stream isolation [3] proposed.

Since then, several works announced with stream

management techniques [4, 5, 6, 7]. All the previous

work has focused on allocating streams to improve

performance and reduce GC costs. According to the

current SCSI / SAS [13] and NVMe [14]

specifications, the stream identifiers (IDs) are in the

range 1 to 65535. However, it is hard to support a

large number of streams due to the hardware resource

limitation in SSD. Hence, the number of streams

supported by the device is not large in commercial

SSDs [3, 4]. We propose to adjust the number of

streams according to workload change and utilize the

saved resource to improve I/O performance. We first

observed the number of flash memory I/Os at

different numbers of available streams with an SSD

simulator using DFTL [8].

Figure 1 shows the number of metadata (Meta)

and GC I/Os while increasing the number of streams

from 1 to 16 with the SSD simulator (See section

4.1). As the number of streams increases, the amount

of GC decreases. In contrast, metadata I/O grow.

After all, we can see that the total number of flash

memory I/Os are increasing. Using a large number of

streams within a limited resource reduces cache

memory. From the trade-off relationship between the

number of streams and cache memory, we can

optimize the efficiency of memory usages explicitly

changing the amount of memory for multi-streams.

Full-page mapping FTL include all mapping

information that indicates the logical page number

(LPN) to the physical page number (PPN). However,

DFTL reloads mapping information to the cache

when the cache miss occurs during the read or write

processing. If the stream increase within a limited

resource, more memory is needed to store user data

(see section 2.2). This tendency motivates that we

can optimize performance by adjusting the cache

memory size of DFTL.

The rest of this paper is organized as follows. We

describe the background and related work in section

2. Section 3 gives the detail of DStream and explains

our technique. Section 4 shows the evaluation results,

and we will conclude in Section 5.

2. Background and Related work

2.1. Multi-streamed SSD: In conventional SSDs

(i.e., single stream SSD), the order of the writes

decides by order of host request. In contrast, MS-

SSD [3] can allocate data with similar lifetimes to the

same stream IDs when it receives a write request

from the host. As a result, when data with similar

lifetimes collect in the same block, GC costs (i.e.,

WAF) are reduced. Also, this behavior can improve

SSD performance.

2.2. NAND flash: NAND flash can divide into two

types: single-level cell (SLC) and multi-level cell

(MLC). SLC stores one bit per cell; however, MLC

stores more than two bits. Recently, triple-level cell

(TLC) is mostly used which is an MLC flash memory

capable of storing three bits in storage systems. Also,

quad-level cell (QLC) flash memory that can store

four bits is also emerging. As such, the number of

bits per cell tends to grow.

 Figure 2 (a) shows the reprogram method that is

sent in three steps at single page granularity, figure 2

(b) is an example of HSP [10]. In the case of the HSP

method, programming complete in one step by

sending three pages. The HSP method is faster than

the 3-step reprogramming method. Also, it consumes

less power. We emulate TLC NAND flash memory

using HSP in MS-SSD simulator. Therefore, we

collect three pages for user data per stream.

2.3. Related work: Recently, research using SSDs

supporting multi-stream functions proposed actively.

AutoStream [4] introduces SFR (Sequentiality

Frequency Recency), and MQ (Multi-Queue) to

automatically assign stream IDs based on data

temperature. PC stream [6] uses the program context

to allocate the stream IDs, and FStream [7] manage

the stream IDs at the file system level. vStream [5]

supports more virtual streams than physical streams.

To classify virtual streams as physical streams, they

use the k-means clustering method. All previous

works focus on stream IDs allocation.

3. DStream

In this section, we introduce DStream which adjusts

the number of streams adaptively using k-means

clustering. Consequently, we utilize extra memory

resources to the cache of DFTL.

3.1. Clustering: For assigning stream IDs, we use k-

means clustering [9]. The value of k is the number of

physical streams (Pstream). We define logical stream

(Lstream) which is N-partitioned stream for LBA [4].

The Lstream can be considered similar to the virtual

stream [5]. We classify Lstreams which have similar

valid bitmap update count into the same Pstream.

Thus, we maintain a bitmap data structure for

managing the validity of pages. If the host overwrites

the same LPN, the bitmap corresponding to the

previous recorded PPN clear, and the valid bitmap

update count is added by one. Since only update

count is added based on the valid bitmap data

structure in FTL, we use less resource consumption

than vStream.

The FTL collects valid bitmap update counts

when performing a certain amount of write requests,

equal to a timestamp. We define one timestamp as

the total size of the page in the same block. The

timestamp is configurable according to the hardware

(i.e., NAND flash and SSD) or workload. As

mentioned above, the previously set valid bitmap

clear when the host overwrites the LPN for each

Lstream. We classify a stream as 'hot' Lstream when

there are many update counts, and 'cold' Lstream, if

there are a fewer update relatively. We perform k-

means clustering based on the update count of

Lstream to calculate centroid.

Figure 2. Conventional 3-step Reprogram method

and HSP used in MLC NAND flash.

3.2. Adaptive resizing stream: In k-means

clustering related research, a method of determining

k value has proposed several times. We introduce the

technique that bases on adaptive k-means clustering

algorithm [11]. This algorithm, which we reference,

calculates the distance between each cluster and

defines the minimum distance as Dmin. Also, the

nearest cluster is defined as Cm1, Cm2. The k values

will adjust according to Dmin, Cm1, and Cm2. These

two closest clusters will be merged when the distance

of the Dmin is less than the distance of the element

from the nearest cluster. After that, the un-clustered

elements are assigned to the empty cluster, creating a

new cluster. The algorithm recalculates the Dmin, Cm1,

and Cm2 again. We employ the same method to

reduce k-value, but the technique used to increase is

different. The DStream technique is as follows:

1. Compute each Element (i.e., Lstream) Ei and the

centroid distance of each cluster for every

timestamp, and assign it to the closest cluster

and update the Dmin, Cm1, Cm1, and centroid.

2. If the distance between Ei and the centroid is

great than Dmin, reduce the k value by merging

Cm1 and Cm2.

3. If the distance between the Ei and the center is

less than Dmin, increase the k value by setting the

mean value of the two hot clusters to the

centroid of the empty cluster. It makes hot

streams are to classify into more clusters.

In order to reduce the cost of computation, we

update cluster at every one timestamp lazily. As we

mentioned previously, the number of Pstream equals

the number of k. Therefore, we change the memory

size in the cache map in DFTL when the number of k

increases or decreases. Hence, to manage cache entry,

the FTL maintains two lists that manage free pool

and cache entry. As the number of k changes, we

remove memory from the cache entry or add it to the

free pool. We use LRU (Least Recently Used)

replacement policy to evict entries.

4. Evaluation

4.1. Experimental Setup: To evaluate DStream,

we implement MS-SSD simulator that providing the

total capacity of 16GB with a 28% over-provisioning

area based on TLC NAND flash memory. The SSD

configuration consists of two channels (c = 2), one

way (w = 1), two planes (p = 2), two logical pages (l

= 2), 8KB page TLC (n=3) with up to 16 physical

streams and up to 200 partitioned logical streams.

Therefore, the buffer size is 192 KB per stream (c *

w * p * l * 8 KB * n). The full-page mapping FTL

needs 16MB of memory to cover 16GB capacity. We

assume DFTL's cache size as 4MB.

We observed the impact of DStream on a variety

of workload changes during the evaluation. Thus, we

run each workload [15] sequentially of MSR (proj_0,

rsrch_0, src2_0, stg_0, usr_0) and FIU (online,

webmail+online, webresearch, webusers, webmail).

Also, we set up the virtual environment running

rockDB (append random, overwrite) and Filebench

(webserver, oltp) benchmarks at the same time and

extract workload by Blktrace [12]. We sequentially

write the user address space once before running the

target workload to achieve stable results.

4.2. Simulator Result: Figure 3 (a), (b), and (c)

shows the change in the number of streams and the

memory size while performing various workload with

DStream. The X-axis in Figure 3 represents the

timestamp. The number of streams shows sharply

decrease since it starts with 16 streams at the

beginning. We can see that the number of streams

and cache size changes adaptively depending on the

workload. While FIU and MSR, which have

relatively less workload variation than Virt, maintain

a stable number of streams. However, Virt

experiment results show significant changes with the

timestamp increase.

Figure 3. Effect of stream count and cache size.

Figure 4 illustrates the comparison of flash

memory I/Os consisting of GC and metadata I/Os.

The results normalized to 16 streams. According to

the Virt workload result, metadata I/Os are reduced

by 82%, FIU by 39% and MSR by 70% compared to

16 streams. The amount of GC I/Os increased by

25% for Virt, 31% for FIU, and 8% for MSR.

Overall, Virt shows a 6% decrease, FIU 10%, and

MSR 24% in the number of flash memory I/Os.

Table 1 shows the cache miss rate for each workload.

We can observe that the cache miss rate reduced by

82%, 36%, and 67% for Virt, FIU, and MSR

workload respectively compared to 16 streams.

Table 1: Cache miss rate (%)

 Virt FIU MSR

16 streams 0.77 0.05 0.21

DStream 0.13 0.03 0.07

5. Conclusion

In this work, we propose DStream that find the

number of streams adaptively in MS-SSDs. The

amount of flash memory I/Os are reduced using the

resource obtained by changing the stream adaptively.

The experiment results show that the number of flash

memory I/Os reduce up to 24% and cache miss rates

decrease up to 82%, depending on the workloads. As

future work, we plan to implement the DStream on a

real target SSD.

References

[1] W. Bux and I. Iliadis, “Performance of greedy

garbage collection in flash-based solid-state

drives,” Performance Evaluation, vol. 67, no. 11,

pp. 1172–1186, 2010.

[2] W. Kang, D. Shin, and S. Yoo, “Reinforcement

learning-assisted garbage collection to mitigate

long-tail latency in ssd,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 16,

no. 5s, p. 134, 2017.

[3] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho,

“The multi-streamed solid-state drive,” In 6th

USENIX Workshop on Hot Topics in Storage

and File Systems (HotStorage 14), 2014.

[4] J. Yang, R. Pandurangan, C. Choi, and V.

Balakrishnan, “AutoStream: automatic stream

management for multi-streamed ssds,” In The

10th Annual International Systems and Storage

Conference (SYSTOR), p. 3, 2017.

[5] H. Yong, K. Jeong, J. Lee, and J.-S. Kim,

“vStream: virtual stream management for multi-

streamed ssds,” In 10th USENIX Workshop on

Hot Topics in Storage and File Systems

(HotStorage 18), 2018.

[6] T. Kim, S. S. Hahn, S. Lee, J. Hwang, J. Lee,

and J. Kim, “PCstream: automatic stream

allocation using program contexts,” In 10th

USENIX Workshop on Hot Topics in Storage

and File Systems (HotStorage 18), 2018.

[7] E. Rho, K. Joshi, S.-U. Shin, N. J. Shetty, J.

Hwang, S. Cho, D. D. Lee, and J. Jeong,

“FStream: managing flash streams in the file

system,” In 16th USENIX Conference on File

and Storage Technologies (FAST 18), pp. 257–

264, 2018.

[8] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a

flash translation layer employing demand-based

selective caching of page-level address

mappings,” ASPLOS 09, pp. 229–240, 2009.

[9] J. A. Hartigan and M. A. Wong, “Algorithm as

136: A k-means clustering algorithm,” Journal

of the Royal Statistical Society. Series C

(Applied Statistics), vol. 28, no. 1, pp. 100–108,

1979.

[10] Y.-J. Choi, K.-D. Suh, Y.-N. Koh, J.-W. Park,

K.-J. Lee, Y.-J. Cho, and B.-H. Suh, “A high

speed programming scheme for multilevel nand

flash memory,” Symp. VLSI Circuits Dig. Tech.

Papers, pp. 170–171, 1996.

[11] S. K. Bhatia et al., “Adaptive k-means

clustering.” Proceedings of International Florida

Artificial Intelligent Research Society

Conference (FLAIRS), pp. 695–699, 2004.

[12] Alan D Brunelle. Block i/o layer tracing:

blktrace. HP, Gelato-Cupertino, CA, USA, 2006.

[13] T10. SCSI Block Commands-4(SBC-4).

[14] NVM EXPRESS WORKGROUP. NVM

Express Revision 1.3.

[15] Storage Networking Industry Association. SNIA

Trace repository.

Figure 4. Comparison of the normalized number

of flash memory I/Os

