Work-in-Progress: Flexible Group-Level Pruning of Deep Neural
Networks for Fast Inference on Mobile GPUs

Kwangbae Lee”, Hoseung Kim*, Hayun Lee”, Dongkun Shin*
*Sungkyunkwan University, Department of Electrical and Computer Engineering, South Korea
{kblee93,ghtmd123,lhy920806,dongkun}@skku.edu

ABSTRACT

Network pruning is a promising compression technique to reduce
computation and memory access cost of deep neural networks. In
this paper, we propose a novel group-level pruning method to accel-
erate deep neural networks on mobile GPUs, where several adjacent
weights are pruned in a group while providing high accuracy. Al-
though several group-level pruning techniques have been proposed,
the previous techniques can not achieve the desired accuracy at
high sparsity. In this paper, we propose a unaligned approach to
improve the accuracy of compressed model.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable perfor-
mance in a variety of problems. To attain high accuracy, DNN mod-
els are becoming larger and deeper. Therefore, recent DNN models
require tremendous computing cost and energy consumption. Thus,
executing those large DNN models at mobile devices which have
limited resources is challenging. To resolve such a problem, net-
work pruning techniques [1, 2] were proposed, which eliminate the
weight connections having a small influence on accuracy.

The fine-grained pruning can prevent significant accuracy loss
by eliminating a small magnitude of weights, but it generates ir-
regular networks. Therefore, it is hard to get a speed-up unless
the pruned network has sufficient sparsity. In contrast, the coarse-
grained approach [3, 4] groups weight elements into regions and
eliminates such regions by magnitude. Therefore, it generates a
structured and regular network, the execution time of the pruned
network can be reduced. However, the coarse-grained pruning in-
curs significant accuracy loss at high sparsity. Moreover, it is very
difficult to attain 1%-2% accuracy improvement or maintain the
desired accuracy using a coarse-grained approach at high sparsity.

The previous coarse-grained pruning approaches [3, 5] imple-
mented with aligned approach, where a given weight matrix is
first partitioned into multiple non-overlapping groups. Then, the
group with small magnitude is removed until the target sparsity
is satisfied. Although this algorithm can find victim groups sim-
ply, an important weight can be removed. Therefore, the aligned
group-level pruning leads to accuracy loss at high sparsity.

In this paper, we introduce a novel group-level pruning ap-
proach, called unaligned group-level pruning, which can select

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org,.

CASES’19, October 1318, 2019, New York, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6925-1/19/10...$15.00
https://doi.org/10.1145/3349569.3351537

Wy = 92 W, = 94 Wy = 97
415131960 415131960 415 91610
B 4 | 5| 9|2 518 |4 (5[9]|2 5184 (5(9]2
01719|6|8|9 0Ol7|19|6 |89 0Ol7|19|6 |89
Tl4l0|7[5]2 71410752 714107 |5]2
3 (45324 314 (5(3[2]4 304 (5(3(2]4
911118 | 7|28 9 (1|8 7|28 9|11 8|7 |28

(b) unaligned group pruning (¢) unaligned group pruning

(a) aligned group pruning P (optimal)

Figure 1: Aligned pruning vs. unaligned pruning.
victim groups without alignment constraint. The weight groups
selected from arbitrary locations can improve accuracy without
losing important weights.

2 UNALIGNED GROUP-LEVEL PRUNING

2.1 Group Size Determination

The weight group size for pruning must be determined considering
underlying hardware factors such as SIMD units, shader cores and
registers. For example, if one 128-bit vector register executed four
32-bit floating-point operations simultaneously by each SIMD unit.
To make full use of the SIMD unit, the group size must be a multiple
of four. Moreover, the number of shader cores is also important
factor. It affects the degree of parallelism such as work-groups.

2.2 Unaligned Group Selection

Our group-level pruning determines whether a group is important
or not based on the magnitude of the group. For example, as shown
in Fig. 1, when the target sparsity is 66.6% and the group size is 2X 1,
the six groups can be preserved. The aligned group-level pruning
yields a regular pruned matrix as shown in Fig. 1(a). However, due
to the aligned group-level approach, several large magnitude of
weights are eliminated. Therefore, the total value of remaining
weights is reduced to 92. If we remove the alignment constraint,
we can select weight groups at arbitrary locations and thus can
preserve the number of significant elements. Fig. 1(b) shows the
result of the unaligned group-level pruning. Under the same sparsity
used in Fig. 1(a), the total values of preserved weights is increased.

As a simple solution for the unaligned group-level pruning, we
can consider a greedy algorithm, which selects the largest mag-
nitude of group from the candidate groups repeatedly. Although
the greedy algorithm is fast and simple, the solution is not optimal
when the matrix size and the group size are large. Fig. 1(c) shows
the result of optimal solution. The total value of preserved weights
in the optimal solution is larger compared with other solution.

To figure out the optimal algorithm, we need to define the un-
aligned group-level pruning problem. First, we transform the 2D
weight matrix (K2C by F) to 1D weight matrix (K>CF by 1) to make a
searching problem in one-dimensional space. The number of groups
to be preserved, m, can be calculated by m = n x (1 — S)/G. When
n denotes the width of the transformed matrix (i.e., n = K2CF) and
the group size is G, for a given target sparsity ratio S.

CASES’19, October 13-18, 2019, New York, NY, USA

3
IS
N

‘' '
[I B

«~— select m groups ———

L] [111

<«— select m-1 groups

<—— select m-1 groups —— <—one group—

-— select m-1 groups —-<—one group—-

<— select m-1 groups —-<—one group—

m
| Wl,n74

W3 | Wn—2(Wn_1| Wa

WL + 35 s|w |

<—one group—-

Wn—4 | Wn—3| Wn_2|Wn_q

| Wik + Zn7h|w |

Wn 5(Wn 4| Wn 3(Wp 2

| i + ZnE|w |

Wn—6

Wy—s

W4

Wn—3

|| v + =izl

Figure 2: The five cases one of which can be a solution to
maximize W/, assuming the group size is 4.

If our algorithm satisfies the following equation, we can say that
it can find the optimal solution.

e—i+G
ko_ k-1 A k
W e = Gg}aggG(Ws,e—i + Z |WJ |’ Ws,e—G) 1)
- j=e—i+l

When WS’f . denotes the total sum of weights in kK number of non-
overlapping groups selected from the sub-region of the target one-
dimensional weight matrix, where the first index and the last index
of the sub-region are s and e, respectively. In Equation (1), w; repre-
sents the weight value with the index j. To help the understanding
of Equation (1), we provide Fig. 2, which illustrates the five cases
one of which can be a solution to maximize W{"n assuming the
group size is 4. Using dynamic programming, the optimal solution
satisfying Equation (1) can be found. When solving the problem,
we must not select a group which is located across two rows. Since
each row operation uses different output registers, such a boundary-
crossing weight group invokes accesses to multiple output registers.
Consequently, this situation makes an adverse impact on latency.

3 EVALUATION

Our target hardware platform is ODROID-XU4 board, which is
equipped with ARM Mali-T628 GPU. We used ACL (Arm Compute
Library 18.11) as a base. Since ACL doesn’t support an optimized
sparse BLAS library, we implemented our own sparse library to
execute the sparse DNN. The pruning didn’t modify the first layer
and the last layer because those layers are sensitive to pruning.
In experiment, the weight group size is set to 4 X 4 for the 2D
group to make the best use of SIMD units on Mali GPUs. We com-
pare the inference latency of sparse DNN models with that of the
corresponding dense models which ran with the ACL.

We evaluated our technique with VGG-13 for CIFAR-10 dataset.
The accuracy of the original dense networks of VGG-13 is 93.57%.
Fig. 3(a) shows the accuracy change on the VGG-13 varying the
sparsity under different 2D-group pruning methods. The optimal
unaligned pruning has higher accuracy than other pruning meth-
ods. At a high sparsity, the difference among those three methods
is even more pronounced. For example, with the sparsity of 94.9%,
the optimal unaligned pruning achieved about 2.8% and 1.6% of
improvements on accuracy over the aligned pruning and the greedy
unaligned pruning, respectively. From this result, we can say that
the proposed optimal pruning algorithm is superior to the aligned

Kwangbae Lee*, Hoseung Kim”*, Hayun Lee*, Dongkun Shin*

ggg nlig{_led Sl 02D aligned
2D umaligned (greedy = =
®2D wnaligned (optimal) m2D mmilg]l.ed (optimal)
mel t-wise M element-wise
94 3
93 £25
<) 3
€92 2 2
Z
291 ':. 1.5
g 90 s 1
< B
89 = 0.5
88 0
802 B854 908 949 80.2 854 908 949

Sparsity (%)

Sparsity (%)

(a) (b)

Figure 3: Experimental result of VGG-13 on CIFAR-10.
algorithm. However, our unaligned pruning may increase the infer-
ence latency since it generates more cache miss. But, the difference
is small (3%-5%). Fig. 3(b) shows the inference latency of sparse
networks normalized by the latency of the original dense network
by ACL. Since the cache miss ratio of sparse networks generated
by different unaligned pruning methods are similar, we show only
the result of the optimal unaligned pruning methods. For example,
at 90.8% of sparsity, the sparse network generated by the unaligned
pruning shows almost 2 times faster performance than the dense
network. However, the result of element-wise pruned networks are
slower than dense networks with ACL at low sparsity.

4 CONCLUSION

The network pruning is an effective technique to reduce the model
size and computation cost. Considering the trade-off between ac-
curacy and performance, we proposed a novel pruning technique,
called unaligned group-level pruning. Unlike the previous group-
level pruning, our unaligned scheme can select weight groups to
be preserved without alignment constraint. Due to its flexibility,
the unaligned group sparse networks can provide higher accuracy.
Based on experimental results, DNN models can be compressed by
unaligned group-level pruning without significant accuracy loss
such that they can be deployed at resource-limited mobile systems.

ACKNOWLEDGMENTS

This work was supported by Institute for Information & Commu-
nications Technology Planning and Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.IITP-2017-0-00914, Software
Framework for Intelligent IoT Devices)

REFERENCES

[1] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135-1143.

[2] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. 2017. Learning efficient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference on Computer Vision. 27362744,

[3] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017).

[4] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074-2082.

[5] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,
and Scott Mahlke. 2017. Scalpel: Customizing dnn pruning to the underlying
hardware parallelism. In ACM SIGARCH Computer Architecture News, Vol. 45.
ACM, 548-560.

