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Abstract—In datacenters and cloud computing, Quality of
Service (QoS) is an essential concept as access to shared resources,
including solid state drives (SSDs), must be ensured. The previ-
ously proposed workload-aware budget compensation (WA-BC)
scheduling algorithm is a device I/O scheduler for guaranteeing
performance isolation among multiple virtual machines sharing
an SSD. This paper aims to resolve the following three shortcom-
ings of WA-BC: (1) it is applicable to only SR-IOV supporting
SSDs, (2) it is unfit for various types of workloads, and (3) it
manages flash memory blocks separately in an inappropriate
manner. We propose the host-level WA-BC (hWA-BC) scheduler,
which aims to achieve performance isolation between multiple
processes sharing an open-channel SSD.

Index Terms—quality of service, solid state drives, open-
channel SSDs, I/O scheduler, performance isolation

I. INTRODUCTION

With the increase in performance per cost of solid state
drives (SSDs), SSDs have been adopted in various areas
from smartphones to datacenters. Such transition stands out
especially in environments requiring high I/O throughput such
as datacenters and cloud computing where multiple processes
or virtual machines share storage resources. Sharing of re-
sources induces I/O interference between different processes;
accordingly, many studies have been conducted to solve this
problem via guaranteeing quality of service (QoS) [1].

The workload-aware budget compensation (WA-BC) sched-
uler [2] is a budget based device-level scheduler proposed to
guarantee performance isolation among applications sharing
an SSD. It focuses on garbage collection (GC) as the source
of interference and evaluates each application’s contribution to
GC. However, WA-BC holds three drawbacks. First, WA-BC
is exclusively for single root I/O virtualization (SR-IOV) [3]
supporting SSDs. Secondly, GC contribution assessment relies
solely on the write amplification factor (WAF). Third, main-
taining of WAF values for each application requires separate
management of flash memory blocks as such as multi-streamed
SSDs [4]. Such drawbacks limit the applicability of WA-BC
to various types of workloads as well as environments.

We propose the host-level workload-aware budget compen-
sation (hWA-BC) scheduler for Open-Channel SSDs (OC-
SSDs) [5], [6]. hWA-BC monitors both (i) the ratio of valid
user data to the amount of consumed storage and (ii) the ratio
of read to write requests of each process for GC contribution
assessment. It then redefines the I/O request costs based on
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Fig. 1. Overall architecture of WA-BC and hWA-BC.

each process’s assessment to either penalize or compensate
the processes; thereby achieving performance isolation.

II. THE HWA-BC SCHEDULER

The hWA-BC scheduler is a host-level scheduler which aims
to achieve fairness amongst multiple processes sharing an OC-
SSD. Fig. 1(b) shows the overall architecture of hWA-BC.
The host-level flash translation layer (FTL) is responsible for
monitoring the status of each process.

hWA-BC allocates a predefined budget to all processes
issuing I/O requests to the shared OC-SSD. For every serviced
I/O request, the cost of each request is deducted from the
given budget. Processes whose budget no longer remains are
excluded from scheduling. The attainment of request cost by
hWA-BC utilizes the regression-based cost modeling technique
introduced by the BCQ [1] scheduler.

The hWA-BC scheduler follows two principles for penal-
izing/compensating the budgets: (i) the owner process of the
valid pages of victim blocks selected during GC should be
penalized, and (ii) read-intensive processes should be compen-
sated compared to write-intensive processes. Two factors, the
read-write request ratio and the valid-invalid flash page ratio,
help hWA-BC evaluate a process’s contribution to GC. The
following equation represents how write costs are modified:

cost′w = costw × [ 1 + α× valid

invalid
+ (1− α)× write

total
]

where cost′w is the modified write cost, valid and invalid
represent the number of valid and invalid flash pages, and978-1-7281-3854-1/19/$31.00 ©2019 IEEE



write and total represent the number of write requests and
the sum of both read and write requests. The degree of how
much each factor penalize the write cost is controlled by α, a
value between 0 and 1.

III. EVALUATION

Our experimental setup consists of a server equipped with
an Intel Xeon E5-2630 v3 (2.40 GHz, 16 cores) and 32 GB
DRAM. A qemu-based emulator, qemu-nvme [7], was used to
emulate the OC-SSD. The guest machine was set up with 16
GB memory, 8 CPU cores, and a 20 GB (emulated) OC-SSD.
The host-level FTL used in our implementation was pblk [8].

To evaluate the applicability of hWA-BC to various types
of workloads, a read-intensive workload which holds large
amounts of cold data was run together with a random write
workload. For this experiment, we used the fio benchmark [9]
with the following workload configurations: 4 KB block size,
queue depth 16, direct I/O, and libaio ioengine. Both processes
were run for 600 seconds. The OC-SSD device was filled to
its 85% utilization beforehand the experiment to invoke GC.

Fig. 2 shows the bandwidth of each workload with the orig-
inal I/O scheduler and the hWA-BC scheduler. The two sched-
ulers show a complete inversion in performance; however,
hWA-BC achieves fairness by providing higher performance
to the read workload. Although the read workload holds lots
of cold data, its number of invalidated pages will be minimal.
On the other hand, since the write workload performs random
I/O, it will likely have contributed more to the occurrence
of garbage collection. Therefore, regarding fairness, the write
workload should be penalized, and the read workload should
be compensated as it experienced interference by the garbage
collection caused by the write workload. From Fig. 2(b), we
can see that hWA-BC succeeded in compensating/penalizing
each workload according to its contribution to interference.
Moreover, the overall throughput of the original and hWA-BC
scheduler was 201 MB/s and 193 MB/s, respectively. From
this, we can assume that the overhead of hWA-BC (e.g., cost
regression analysis, status management) is negligible.

The fluctuations in the bandwidth of the write workload
in Fig. 2(a) is due to the write buffering of pblk. As the
write buffer is filled up faster with write requests in batches,
processes will have to wait longer until there is enough space
within the buffer. This explains the sharp drops in bandwidth.

IV. CONCLUSION

We propose a novel I/O scheduler, hWA-BC, which solves
the three problems of the WA-BC scheduler mentioned above.
hWA-BC consolidates with the block I/O scheduler; thereby no
redundant I/O scheduling occurs. In addition, we propose an
algorithm that calculates read and write costs considering the
read-write patterns. Finally, we propose a method to determine
how much each process contributed to garbage collection
even when data from multiple processes share a single flash
block. We developed a prototype of hWA-BC and measured
its performance using nvme-qemu. We will develop an hWA-
BC prototype based on the openSSD Cosmos platform [10]

Fig. 2. The throughput (MB/s) of sequential read and random write workloads
during garbage collection.

in the future and observe the effects of hWA-BC on various
workloads such as virtual machine environments.
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