
Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write
Performance

Sangjin Yoo
Sungkyunkwan University, Samsung Electronics

Dongkun Shin
Sungkyunkwan University

Abstract
Although quad-level-cell (QLC) NAND flash memory can
provide high density, its lower write performance and en-
durance compared to triple-level-cell (TLC) flash memory are
critical obstacles to the proliferation of QLC flash memory.
To overcome such drawbacks of QLC flash memory, hybrid
architectures, which program a part of QLC blocks in the
single-level-cell (SLC) mode and utilize the blocks as a cache
of remaining QLC blocks, are widely adopted in the commer-
cial solid-state disks (SSDs). However, it is challenging to
optimize various parameters of hybrid SSDs such as the SLC
cache size and the hot/cold separation threshold. In particular,
the parameters must be adjusted dynamically by monitoring
the change on I/O workloads. However, current techniques
use fixed parameters determined heuristically. This paper
proposes a reinforcement learning-based SLC cache manage-
ment technique. By observing workload pattern and internal
status of hybrid SSD, it determines the optimal SLC cache
parameters maximizing the efficiency of hybrid SSD. Exper-
imental results show that the proposed technique improves
write throughput and write amplification factor by 77.6% and
20.3% on average, respectively, over the previous techniques.

1 Introduction

Recently, quad-level-cell (QLC) NAND flash memory, which
can store four bits per cell, is becoming a mainstream storage
medium of solid-state drives (SSDs). QLC flash memory has
a higher density, and lower cost compared to single-level-cell
(SLC) or triple-level-cell (TLC) flash memories. However,
QLC flash memory has slower performance and lower en-
durance than its previous generation memories, as shown in
Table 1. In order to hide the slow performance of QLC flash
memory, most recent QLC-based SSDs adopt a hybrid SSD
architecture which has a partitioned SLC region. The flash
blocks in the SLC region are programmed in the SLC mode
(i.e., they store only one bit per cell.), and thus they provide
a shorter access latency than QLC blocks. The SLC region

is utilized as a cache space of the remaining QLC region. By
writing frequently-updated data at the SLC region, the overall
performance of hybrid SSD can be improved.

In order to design a hybrid SSD, two important factors
must be determined. The first is the size of the SLC region,
which must be determined considering the trade-off between
capacity loss and SLC-to-QLC block migration overhead.
Since the capacity of an SLC block is smaller than that of
a QLC block, the total capacity of SSD is reduced as more
flash blocks are allocated to the SLC region. On the contrary,
a too small SLC region will result in high migration costs
while increasing the latency of write requests and the write
amplification ratio. This is because the data in the SLC region
must be migrated to the QLC region when the free blocks in
the SLC region are insufficient.

The second factor is the hot/cold separation threshold. Con-
sidering the SLC-to-QLC migration cost, it is better to write
only frequently-updated data (hot data) at the SLC region.
Other cold data need to be sent directly to the QLC region.
To discriminate between hot data and cold data, the hybrid
SSD needs to observe several factors of write requests such
as data size, target address, and update frequency. A widely
used simple heuristic approach is to use the data size since
small data tend to be frequently-updated [7, 10]. If the data
size is smaller than a threshold, the data can be regarded as
hot data. As a lower threshold is used, the write traffic to the
SLC region decreases, and thus the SLC-to-QLC migration
cost also decreases. However, more number of write requests
will be sent to the QLC region, resulting in the overall write
performance degradation. Therefore, the SLC cache size and
the hot/cold separation threshold must be determined by con-
sidering the workload patterns and the internal behavior of
hybrid SSD such as migration cost. Besides, these factors
must be adjusted according to the system state change.

However, the existing techniques use heuristically-
determined fixed design factors and do not adjust the factors
at run time. In this paper, we propose a reinforcement learn-
ing (RL)-based SLC cache management technique for hybrid
SSDs. To the best of our knowledge, our technique is the first

Table 1: Characteristics of SLC, TLC and QLC memories [12]
SLC TLC QLC

Program time (page) 160 us 730 us 3102 us
Read time (page) 30 us 66 us 140 us
Erase time (block) 3 ms 4.8 ms 3.5 ms

Endurance (Max. P/E) 100,000 3,000 1,000

machine learning-based dynamic approach for hybrid SSD.
Our RL-based technique defines several states that reflect
the characteristics of the workload and the internal behavior
of hybrid SSD. It determines the optimal SLC cache param-
eters using the Q-learning algorithm. Experimental results
show that the RL-based technique can improve the SSD write
performance compared to the existing techniques, by dynam-
ically adjusting the SLC cache factors based on the system
states.

2 BACKGROUND AND MOTIVATION

2.1 Hybrid SSD Architecture

Figure 1 shows a typical hybrid SSD architecture. As men-
tioned before, the flash blocks are divided into an SLC region
and a QLC region. The key parameters, which have a strong
influence on the write performance, are the hot/cold separa-
tion threshold (θ) and the SLC region size. The write requests
with the data size not larger than θ are sent to the SLC region,
whereas other requests are sent to the QLC region. Some old
data in the SLC region can be migrated into the QLC region
when the free space in the SLC region is insufficient.

According to the SLC region management scheme, there
are two types of hybrid SSDs: static scheme and dynamic
scheme. While the static scheme maintains a fixed size of SLC
region and a fixed hot/cold threshold [4, 7, 8], the dynamic
scheme can adjust the SLC region parameters depending on
the system states such as amount of stored data, I/O access
pattern, and garbage collection cost [6, 13].

Recently, several QLC SSD products began to adopt the
dynamic scheme-based hybrid SSD architecture [1–3]. They
use a simple technique to adjust the SLC cache size. A proper
SLC region size for a given storage utilization is investigated
at offline with representative workloads. At run time, the SLC
region size is adjusted by referring to the offline result as the
storage utilization changes. Therefore, their performance can
be degraded under unexamined or variable workloads.

2.2 Motivation

To observe the problem of the current dynamic hybrid SSDs,
we performed experiments with our own trace-driven hybrid
SSD simulator. Two real-world workloads were used: PC and
YCSB-A. The PC workload trace was collected at Windows

Figure 1: Typical hybrid SSD architecture.

Table 2: Two example settings on SLC cache size at different
storage utilizations (%)

Space
utilization (%)

0
∼20

20
∼30

30
∼40

40
∼50

50
∼60

60
∼70

70
∼100

Setting 1 56 50 40 30 25 20 10
Setting 2 40 40 30 25 20 10 5

10-based desktop, and it includes a larger number frequently-
updated data compared to the YCSB-A database workload [5].
The total capacity of the SSD was set to 32 GB. We examined
the hybrid SSD performance with two different SLC cache set-
ting policies, as shown in Table 2, each of which uses different
SLC cache sizes at different storage utilizations. The data of
Setting 1 are originated from a commercial SSD [3]. Setting 1
(S1) utilizes the SLC cache more aggressively than Setting 2
(S2). The hot/cold separation thresholds (θ) of Setting 1 and
Setting 2 are 64KB and 16KB, respectively.

Figure 2 compares the total I/O execution times under dif-
ferent policies and different space utilization values. The exe-
cution time is divided into four parts based on write type: host
writes to SLC cache (SLC), host writes to QLC region (QLC),
SLC-to-QLC migrations (SLC-to-QLC), and garbage collec-
tions within QLC region (QLC-to-QLC). From the results,
we can know that the better policy between Setting 1 and Set-
ting 2 is different depending on the workload and the storage
utilization. For example, in the PC workload, when the initial
storage is empty (i.e., the utilization is 0%), Setting 1 shows
a better result than Setting 2 since many write requests are
serviced at the SLC region without significant SLC-to-QLC
migration overhead. However, when the utilization is high,
Setting 1 shows a worse result due to high migration cost.
In the YCSB-A workload, Setting 1 shows a worse result at
low utilization. Since Setting 1 allocates more flash blocks
to the SLC region, the capacity of the QLC region is small.
Therefore, the QLC garbage collection cost increases.

Consequently, we need a more intelligent algorithm to ad-
just the SLC cache configuration considering the dynamically
changing system states. The traditional adaptive control algo-
rithms could be a solution. However, it is hard to design and
tune an algorithm which can effectively handle the various
system states of hybrid SSD under dynamically changing user
workloads. We adopt a reinforcement learning (RL)-based
method. Without any prior knowledge about user workload
or storage characteristics, the RL-based approach can learn

Figure 2: Write performance under different SLC cache man-
agement policies.

how to find the optimal management policy. Therefore, it can
be used for any user scenarios and any storage products.

2.3 Reinforcement Learning and its Applica-
bility to Dynamic SLC Cache

In reinforcement learning, an agent learns to act optimally
through observations and rewards from the environment. The
purpose of reinforcement learning is to choose the action that
maximizes cumulative reward. We employ Q-learning, which
is a widely used reinforcement technique [11]. In Q-learning,
the agent calculates Q-values that tell the agent which action
is right in a given state. The agent chooses an action a in any
given state s, and observes the reward r and the next state s′.
Then, the Q-value is updated as follows:

Q(s,a) = Q(s,a)+α(r+ γmax
a

Q(s′,a′)−Q(s,a)) (1)

where α and γ are the learning rate and the discount factor, re-
spectively, a′ is the action in the next state s′. The Q-learning
maintains a key data structure, called Q-table, to store Q(s,a).
The size (# of entries) of Q-table is # of states × # of ac-
tions. We employ the ε-greedy algorithm for exploration that
can maximize the total reward in the long time interval. In
Equation (2), ε is a probability between 0 and 1. The agent
mostly selects the action a∗ in a given state s by exploiting
the learned policy. At a low probability of ε, the agent selects
a random action to explore the optimal policy of the changing
environment. We set ε to 0.07 in our experiments.

π(s) =
{

a∗ = argmaxa Q(s,a),1− ε

a 6= a∗,ε (2)

Figure 3 shows how the reinforcement learning can be applied
to the dynamic SLC cache. At each time step, the agent, i.e.,
the SLC cache manager, selects an action At including the
changes of the SLC cache size and the hot/cold separation
threshold. The environment defines the state St based on the
workload characteristics and the internal status of the SSD,
and estimates the reward Rt for the previous action.

Figure 3: SLC cache management with RL agent.

3 RL-based Dynamic SLC Cache

3.1 Overall Algorithm
The proposed RL-based technique takes an action at every
time step. Each time step is defined as a predetermined cu-
mulative amount of host write requests. The size of time step
interval determines the sensitivity of the agent’s reaction. If
the interval is too short, the agent cannot observe meaningful
changes on the system states. On the contrary, the agent will
miss state changes when the interval is too long. To observe
the change on SLC-to-QLC migration cost, each time step is
configured to the size of eight SLC blocks in our implementa-
tion.

Algorithm 1 shows the pseudo-code of the proposed SLC
cache management, which is called at every time step. The
current state St , the previous state St−1, and the previous ac-
tion At−1 are inputs. The algorithm chooses the action At
for the current state St by calling GetAction(), which re-
turns the action A which maximizes Q(St ,A) for the given St ,
by referring to the Q-table. The selected action At includes
the adjustment on SLC cache size and hot/cold separation
threshold. After performing the action At , the agent checks
the reward of the previous action At−1 in GetReward() func-
tion. Finally, the agent updates Q(St−1, At−1) in the Q-table
by using Equation 1.

Algorithm 1 SLC Cache Management
Input: State (St), State (St−1), Action (At−1)
Output: Action (At)

1: At = GetAction(St)
2: Perform At
3: Rt = GetReward()
4: Update Q-value (St−1, At−1) with Equation 1

3.2 States
For the agent to learn the optimal policy for the SLC cache
management, several states must be observed to know the
change of environment, which includes both the host and the
SSD subsystem. Table 3 shows the selected states, each of
which is divided into multiple bins to limit the total number
of different states of the environment.

The SLC cache size is the main state of hybrid SSD. It has
a strong influence on garbage collection and SLC-to-QLC
migration costs. The SLC cache size is also the target of the

Table 3: States
Category Information used for State # of bins

SLC cache size 9
SSD Space utilization 4

Previous action 9
Host Demand for SLC writes 2

Workload Update write frequency in SLC cache 2

action. We use nine intervals to represent the SLC cache size.
The space utilization is the ratio between the size of valid data
and the total capacity of the SSD. As the space utilization
becomes higher, the garbage collection cost at the QLC region
increases. The agent will learn to restrain itself from increas-
ing the SLC cache when the space utilization is high. The
previous action includes the recent decision of the agent and
the recent system states. By considering the previous action,
the agent can determine a history-aware current action.

For host workload states, we use the demand for SLC writes
and the update frequency in the SLC cache. The first one rep-
resents how much hot data the host generates, and the second
one means the intensity of hotness of the host data written in
the SLC cache. If the demand for SLC writes increases, the
agent needs to increase the SLC cache or reduce the amount
of data to the SLC cache by decreasing the hot/cold separa-
tion threshold. The decision must also consider the garbage
collection cost in the QLC region. If the update frequency of
the data stored in the SLC cache is high, the SLC-to-QLC
migration cost will decrease due to many invalidated data in
the SLC cache. Therefore, it is also an important factor to
determine the SLC cache size suitable for the host workload.

From the number of bins of each state in Table 3, the total
number of environment states is 1,296 (= 9×4×9×2×2), and
the Q-table size is 5,186 bytes, which can be stored at an SLC
flash page with the size of 16 KB. The small Q-table can
be cached in the internal DRAM of SSD. If we increase the
number of bins of each state, the agent could act more cor-
rectly. If the memory space for caching Q-table is insufficient,
an on-demand loading technique can be used. However, too
many states will require too long training time, and thus the
agent cannot be agile. Therefore, considering the trade-off,
the number of bins of each state must be determined.

3.3 Reward

The main goal of our algorithm is to improve the overall write
performance. The latency of a write request will be different
depending on the program mode, i.e., SLC mode or QLC
mode. In addition, the host write request to the SLC region
can be delayed by SLC-to-QLC migration operations, which
can also be delayed by QLC garbage collection operations.

The host write request to the QLC region can also be de-
layed by QLC garbage collection. Therefore, we need to con-
sider all the costs to calculate the reward of the previous

action.
Algorithm 2 shows the pseudo-code of the proposed reward

function. It gets several write-related costs and space utiliza-
tion as inputs. It first calculates the reclaim cost and the host
write cost. The reclaim cost is the sum of SLC-to-QLC mi-
gration cost (TSLC−to−QLC) and QLC garbage collection cost
(TQLC−to−QLC). The host write cost is the sum of SLC cache
write cost (TSLCwrite) and QLC region write cost (TQLCwrite),
each of which does not include the waiting time due to SLC-
to-QLC migration or QLC garbage collection. The total write
cost is the weighted sum of the host write cost and the reclaim
cost. As the space utilization is higher, a higher weight is
given to the reclaim cost and a lower weight to the host write
cost. This is because the effect of reclaim cost on the overall
performance is more significant at a higher space utilization.
By giving a higher weight to the reclaim cost, the reduction
on the SLC cache size can be accelerated when the utilization
is high. The final reward value is determined to be positive or
negative depending on the comparison result to the average
total write cost.

Algorithm 2 Reward function
Input: TSLC−to−QLC, TQLC−to−QLC, TSLCwrite, TQLCwrite, space

utilization U
Output: Reward (Rt)

1: reclaim cost = TSLC−to−QLC + TQLC−to−QLC
2: host write cost = TSLCwrite + TQLCwrite
3: total write cost = (1-U)×host write cost + U×reclaim

cost
4: if total write cost > average total cost then
5: Rt = negative reward
6: else
7: Rt = positive reward
8: end if
9: Update average total write cost

4 Experiments

To evaluate the efficiency of the proposed method, we imple-
mented a trace-driven hybrid SSD simulator. The simulator
estimates the latency of each write request by counting the
numbers of SLC or QLC flash read, program, and erase oper-
ations required to handle the request. Several flash memory
parameters were configured, as shown in Table 1. To sim-
plify the analysis, we assumed that the SSD has only one
32GB NAND QLC flash memory chip which consists of 2,138
blocks. However, the proposed algorithm can be applied to
more complex SSD architectures by designing a proper write
cost model. The page size is 16 KB, and a block has 256 pages
and 1024 pages at SLC mode and QLC mode, respectively.
The over-provision area for garbage collection is 3% of total
capacity. The SSD has 144 KB of write buffer for handling
host writes and garbage collection.

Table 4: Workload Characteristic
Trace PC Phone TPC-C OLTP LinkBench YCSB-A

Address space (MB) 1,029 7,606 4,622 5,694 4,482 30,241
Total write amount (MB) 46,426 81,833 39,506 25,866 38,391 97,294
Avg. request size (KB) 66.7 42.8 34.3 35.8 28.2 896.3

Write request size distribution (%)

≤ 128KB 29.47 25.22 53.25 53.4 61.76 0.09
≤ 256KB 23.08 1.47 2.06 5.01 3.21 0.06
≤ 512KB 27.03 1.76 16.05 12.42 15.58 3.87
> 512KB 20.42 71.55 28.64 29.17 19.45 95.98

The hybrid SSD simulator includes a flash translation layer
(FTL), which manages 4KB page-level logical-to-physical
address mapping. We assumed that the address mapping table
is fully cached at DRAM, and thus there are no additional flash
operations to access the mapping table. When the number of
free blocks of each region is below 5 blocks, SLC-to-QLC
migration or garbage collection are invoked.

Since the RL agent runs within the hybrid SSD, it will con-
sume some amount of CPU cycles and DRAM space to main-
tain Q-table, which may delay the host IO request handling.
However, the CPU and DRAM overheads are much smaller
compared to the cost of flash memory operations. Therefore,
we ignored the overhead of the agent in the simulation.

We used six workloads for simulator inputs collected with
the blktrace or the diskmon tool. The PC trace was ex-
tracted from a Windows 10-based desktop while running web
browsers and compiler. The Phone trace was collected from
a smartphone under multiple applications [14]. The TPC-C
trace was extracted while executing TPCC-MySQL tool with
160 warehouses on MySQL for 10 minutes. The OLTP trace
and Linkbench trace were collected by running Sysbench and
Linkbench benchmark on MySQL, respectively. The YCSB-
A trace is the workload type A of YCSB running on RocksDB
with 16 million keys. Table 4 shows the characteristics of the
traces.

We compared the proposed RL-based technique with two
previous dynamic SLC techniques: utilization-aware self-
tuning (UST) [13] and dynamic write accelerator (DWA) [3,6].
The UST allocates a different number of SLC or QLC physi-
cal blocks to each logical block depending on its locality. At
maximum, MAXSLC number of SLC blocks can be allocated
to a logical block. In order to observe data locality, all write re-
quests are first sent to SLC blocks. When there is no sufficient
space in the SLC blocks, the garbage collection for the SLC
blocks moves hot data within SLC blocks (SLC-to-SLC), and
moves cold data to QLC blocks (SLC-to-QLC). Therefore, as
the number of hot logical blocks increases, many SLC blocks
will be allocated. So, the total number of SLC blocks will
change depending on workloads. The value of MAXSLC is 6
blocks in our experiment. DWA adjusts the SLC cache size
according to the space utilization. Considering the character-
istics of the target workloads, we used the Setting 1 in Table 2.
The hot/cold threshold, θ, is fixed to 32 KB in DWA.

Figure 4: Write throughput comparison.

(a) PC

(b) OLTP

Figure 5: The change of the number of allocated SLC blocks.

4.1 Performance Evaluation

Figure 4 compares write throughputs of different schemes
with six workloads. The results are normalized to that of the
baseline method, which uses only QLC blocks without the
SLC cache. The RL scheme outperforms all other techniques
under most workloads except for the case of YCSB-A. Since
most of the write requests are large and most of the data are
cold in YCSB-A, the SLC cache was little utilized in the RL-
based scheme. So, its performance is similar to the baseline
performance.

To analyze the behavior of SLC cache management tech-
niques, we observed the number of allocated SLC blocks and

(a) PC

(b) OLTP

Figure 6: The change of hot/cold separation threshold (θ) at
the RL-based SLC cache scheme.

the hot/cold separation threshold (θ) at every 128 MB of host
write (episode), as shown in Figure 5 and Figure 6. Com-
pared to DWA and UST, the RL-based technique adjusts more
dynamically the SLC cache size and the hot/cold separation
threshold. In the PC workload, which has many frequently-
updated data, the proposed method allocates less number of
SLC blocks than UST does, but maintains a large value of θ,
i.e., 512 KB, to store as much hot data as possible in the SLC
cache.

Figure 7 shows the breakdown of I/O execution time.
The RL technique reduced the QLC-to-QLC or SLC-to-SLC
garbage collection overhead compared to UST. Note that UST
performs the garbage collection within SLC blocks for hot
data whereas our hybrid SSD does not have the SLC-to-SLC
migration. The migration and garbage collection costs of the
RL-based technique are 65.2% lower than that of UST. Com-
pared to DWA, the QLC write overhead is reduced by the
RL scheme. From this result, we can know that the RL-based
technique can find the optimal SLC cache parameters under
various workloads. Since the RL-based technique reduces mi-
gration and garbage collection costs, the write amplification
factor (WAF) is also improved. The proposed scheme reduced
the average WAF by 20.3% over other techniques.

4.2 Effect of Agent Pre-training

The proposed RL-based technique requires a long training
time for unexamined workloads or SSD subsystems. However,
if an agent that has been pre-trained at one system is used
at other systems, it can adapt to the new environments in a
short time. To check the effect of the trained agent, we first
trained an agent with several workloads of PC, Phone, YSCB-
A, and LinkBench. And then, we observed the performance

Figure 7: Write execution time comparison.

Figure 8: Comparison between pre-trained and untrained
agents.

of the agent at other workloads of TPC-C and OLTP. Figure 8
compares I/O performances of pre-trained agent and untrained
agent. The pre-trained agent improves the write performance
by up to 12.8% over the untrained agent. Therefore, we can
know that the RL-based scheme can be applied quickly to a
new system by using a pre-trained agent.

5 Conclusion

Due to the increased bit density of flash memory, the hybrid
SSD technology is becoming more and more important to
enhance write performance. In this paper, we proposed an
RL-based SLC cache technique for the hybrid SSDs. The
proposed method dynamically determines the optimal SLC
cache parameters based on the system states, including the
characteristics of the workload and the internal status of the
SSD. As a result, the write performance is significantly en-
hanced without any prior knowledge about host workload or
storage characteristics.

As a future work, we have a plan to examine the effect of
the proposed RL scheme at a real SSD subsystem. Another
work is to apply the technique at multi-stream SSDs [9]. The
host can deliver data separation decisions to a multi-stream
SSD via the stream interface. Different streams tend to have
different update patterns. Thus, we can utilize the stream
information to determine the optimal number of SLC blocks
of each stream by observing the data lifetime of the stream.

References

[1] Crucial P1 SSD, accessed on Dec. 12, 2019 [Online].
https://www.crucial.com/usa/en/storage-ssd-p1.

[2] Samsung 860 QVO SSD, accessed on Dec. 12, 2019
[Online]. https://www.samsung.com/semiconductor.

[3] The Intel SSD 660p SSD Review : QLC NAND Ar-
rives For Consumer SSDs, accessed on Dec. 12, 2019
[Online]. https://www.anandtech.com/show/13078/the-
intel-ssd-660p-ssd-review-qlc-nand-arrives.

[4] Li-Pin Chang. A hybrid approach to NAND-flash-based
solid-state disks. IEEE Transactions on Computers,
59(10):1337–1349, 2010.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[6] Dave Glen. Optimized client computing with dynamic
write acceleration. Micron, 5, 2014.

[7] Soojun Im and Dongkun Shin. ComboFTL: Improv-
ing performance and lifespan of MLC flash memory
using SLC flash buffer. Journal of Systems Architecture,
56(12):641–653, 2010.

[8] Xavier Jimenez, David Novo, and Paolo Ienne. Soft-
ware controlled cell bit-density to improve NAND flash
lifetime. In Proceedings of the 49th Annual Design
Automation Conference, pages 229–234. ACM, 2012.

[9] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-streamed Solid-State Drive.
In 6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage’14), 2014.

[10] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong
Kim. LAST: locality-aware sector translation for NAND
flash memory-based storage systems. ACM SIGOPS
Operating Systems Review, 42(6):36–42, 2008.

[11] Richard S Sutton, Andrew G Barto, et al. Introduction
to reinforcement learning, volume 2. MIT press Cam-
bridge, 1998.

[12] Yoshiki Takai, Mamoru Fukuchi, Reika Kinoshita, Chi-
hiro Matsui, and Ken Takeuchi. Analysis on Heteroge-
neous SSD Configuration with Quadruple-Level Cell
(QLC) NAND Flash Memory. In 2019 IEEE 11th Inter-
national Memory Workshop (IMW), pages 1–4. IEEE,
2019.

[13] Ming-Chang Yang, Yuan-Hao Chang, Chei-Wei Tsao,
and Chung-Yu Liu. Utilization-aware self-tuning de-
sign for TLC flash storage devices. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
24(10):3132–3144, 2016.

[14] Deng Zhou, Wen Pan, Wei Wang, and Tao Xie. I/O
characteristics of smartphone applications and their im-
plications for eMMC design. In IEEE International
Symposium on Workload Characterization, pages 12–

21, 2015.

	Introduction
	BACKGROUND AND MOTIVATION
	Hybrid SSD Architecture
	Motivation
	Reinforcement Learning and its Applicability to Dynamic SLC Cache

	RL-based Dynamic SLC Cache
	Overall Algorithm
	States
	Reward

	Experiments
	Performance Evaluation
	Effect of Agent Pre-training

	Conclusion

