
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 66, NO. 4, NOVEMBER 2020 299

Virtual Connection: Selective Connection System
for Energy-Efficient Wearable

Consumer Electronics
Gyeonghwan Hong and Dongkun Shin , Member, IEEE

Abstract—Wearable consumer electronics such as smartwatch
and smartglasses generally use peer-to-peer (P2P) communica-
tions to connect to their companion devices such as smartphones.
The recent wearable consumer electronics are equipped with
multiple heterogeneous network interfaces, which have differ-
ent power consumption and transfer bandwidths. To optimize
energy efficiency, a network interface must be selected for com-
munication depending on workload or system state. Such a
technique is referred to as selective connection. However, the cur-
rent selective connection systems cannot support the P2P-based
wearable devices. We propose a protocol-independent user-level
system, called virtual connection, that decouples applications
from network-specific operations for selective connections. The
proposed virtual connection system consists of user-level API
and user-level middleware components. To establish the use-
fulness of our virtual connection, we present a case study of
the selective P2P connection for wearable consumer electron-
ics equipped with Bluetooth and Wi-Fi Direct. We demonstrate
that, compared to existing selective connection systems, the P2P-
based selective connection system implemented with the virtual
connection can reduce the energy consumption of the wearable
consumer electronics by 1.26-2.31 times.

Index Terms—Communication framework, low-power system,
peer-to-peer communication, wearable consumer electronics,
wireless communication.

I. INTRODUCTION

WEARABLE consumer electronics such as smartwatch
and smartglasses generally have no direct connection to

Internet. Instead, they use peer-to-peer (P2P) communications
such as Bluetooth or Wi-Fi Direct (WFD) to connect with a
smartphone, which provides Internet services [1]–[7] or com-
puting resources [8]–[12] to its companion wearable devices.
This is because the limited battery capacity of wearable
consumer electronics cannot afford to use cellular networks
causing a significant energy consumption. The Wi-Fi connec-
tion through access point (AP) cannot also be used due to the
mobility of wearable devices.

Manuscript received June 19, 2020; revised October 20, 2020; accepted
October 31, 2020. Date of publication November 3, 2020; date of cur-
rent version November 25, 2020. This work was supported by the
Institute of Information and Communications Technology Planning and
Evaluation (IITP) Grant funded by the Korea Government (MSIT) under
Grant IITP-2017-0-00914 (SW Starlab) (Software Framework for Intelligent
IoT Devices). (Corresponding author: Dongkun Shin.)

The authors are with the Department of Electrical and Computer
Engineering, Sungkyunkwan University, Suwon 16419, South Korea (e-mail:
redc7328@skku.edu; dongkun@skku.edu).

Digital Object Identifier 10.1109/TCE.2020.3035689

To support P2P communications, recent wearable con-
sumer electronics are equipped with multiple heterogeneous
network interfaces, which have different power consumption
and transfer bandwidths. For example, smartwatches have both
Bluetooth and Wi-Fi interfaces. Bluetooth is generally used for
transmission of small messages since it requires lower power
consumption than Wi-Fi. When the message size is large,
Wi-Fi is more energy-efficient due to its high network band-
width. Therefore, the trade-off between power consumption
and network bandwidth of wireless interfaces must be con-
sidered to optimize the energy efficiency, and one of multiple
network interfaces must be selected for communication con-
sidering workload or system state. We call such a technique
selective connection.

The selective connection systems require three basic func-
tions: network selection, network switching, and seamless
handover. The network selection function selects a network
connection based on the feature of each network interface
and the network workload to minimize the communication
energy consumption. The network switching function opens
the connection selected by the network selection function and
closes the previous network connection to put the unused
network interface into the power save mode or sleep mode.
The seamless handover function transfers messages with-
out interruptions through any available connection during the
network switching. With the seamless handover, the message
transfer will not cease during the network switching.

Several selective connection systems have been
proposed [5]–[8], and they provide all the basic func-
tions. For example, MPWear [5] is a user-level daemon that
selectively activates Wi-Fi or Bluetooth to send or receive
messages to or from the Internet, as shown in Fig. 1(a). The
throughput-aware network selection policy, the multipath, and
the Wi-Fi/Bluetooth adapters of MPWear are in charge of
network selection, seamless handover, and network switching,
respectively. First, when an application sends messages
to the Internet, the MPWear daemon gets the packets by
hooking them at the TCP/IP stack through netfilter [13].
In the daemon, the multipath module forwards the message
to the currently activated network adapters. After that, a
Wi-Fi adapter or a Bluetooth adapter sends the message to
the Internet through the underlying network protocol stack.
During the execution of the daemon, the network selection
policy periodically monitors the system state and selects one
of the adapters to activate the proper network interface.

1558-4127 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7903-0100
https://orcid.org/0000-0001-7235-7787

300 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 66, NO. 4, NOVEMBER 2020

However, when we try to use the previous selective con-
nection systems for P2P-based wearable consumer electronics,
several problems must be resolved. First, even though the
previous systems [5]–[7] provide all the basic functions, the
functions are not designed with considering the characteris-
tics of P2P network devices, which are different from those
of normal Internet network devices. When the network device
is deactivated by the selective connection, it can be changed
to the power save mode (PSM) or the sleep mode. Since
the network connection is maintained at the PSM mode,
the communication interface can be reactivated with a short
delay. However, the PSM of WFD consumes several times
higher power compared to other network devices such as
Bluetooth [6], [14]. Therefore, it is better to close the WFD
network connection and change the WFD device into the sleep
mode if it will not be used for a long period. However, it gener-
ally takes a significantly long time and requires a high power
consumption to establish a P2P connection again owing to
the discovery operation of the P2P network. Considering the
high cost of network switching, the selective connection for
P2P communications must change the network interface only
when the currently activated network interface is not useful
for a long period. To do that, the network selection policy
must predict the future workload. However, the previous tech-
niques [5]–[7] consider only the current system status such
as network throughput or network signal strength to select
a network interface, and thus they cannot minimize energy
consumption due to frequent network switchings.

In addition, P2P network must control the network
interfaces of the remote peer device during network switching.
For example, when a smartwatch tries to send a large size of
data via WFD to a smartphone which is currently connected
to the smartwatch through Bluetooth, the WFD adapters on
both the smartwatch and the smartphone must be activated.
For the purpose, the selective connection system of a device
needs to control the network adapters of remote peer devices
by sending control messages. However, since the previous
techniques [5]–[7] were not designed considering the features
of P2P communication, they do not support such a remote
control.

Second, P2P networks usually have their proprietary user-
level network protocol stack. For example, Bluetooth network
stack requires user-level daemons such as BlueZ [15].
Bluetooth LE and Z-wave also use their proprietary network
protocol stacks instead of using the in-kernel standard TCP/IP
stack. However, the previous techniques such as MPWear [5]
and CoolSpots [6] hook communication messages only at the
TCP/IP stack by netfilter [13]. The target devices of the tech-
niques are assumed to be connected to Internet requiring every
message to pass through the TCP/IP stack. To use the selective
connection at P2P-based consumer electronics, it is required
to hook communication messages between applications and
the user-level P2P network protocol. So, the recently-proposed
WearDrive [8] provides user-level API functions to directly get
messages from applications, as shown in Fig. 1(b).

Third, the current P2P-based selective connection systems
such as WearDrive [8] provide only high-level API functions
designed for specific applications such as remote key-value

Fig. 1. Comparison of selective connection systems: (a) MPWear [5];
(b) WearDrive [8]; (c) proposed virtual connection system. The arrows
between boxes denote the direction of message transfer. The white boxes
are user-level components whereas the grey boxes are kernel-level compo-
nents. The boxes with thick borders denote the communication APIs. The
boxes with dashed borders denote programmable components.

and remote sensor, which are not compatible with the standard
Internet socket API. Therefore, WearDrive must be modified
to provide additional API functions to support other appli-
cations. If a selective connection system provides a standard
socket-like API, various applications can be supported without
modifying the system.

Lastly, many wearable consumer electronics are equipped
with various P2P network interfaces such as WFD, Bluetooth
LE, and Z-wave. To support a new P2P network interface,
the selective connection system must be programmable to
add a network adapter easily. In addition, the network selec-
tion policy also must be programmable to adapt it to various
network environments and applications. However, most of the
previous techniques provide no programming APIs to add

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

HONG AND SHIN: VIRTUAL CONNECTION: SELECTIVE CONNECTION SYSTEM FOR ENERGY-EFFICIENT WEARABLE CONSUMER ELECTRONICS 301

a new network adapter or a new network selection policy.
Therefore, the supported network adapters and the network
selection policy are fixed.

In summary, selective connection systems for P2P-based
wearable consumer electronics have four requirements.

• Workload Prediction: The network selection policy must
be able to predict the future workload to select the
network interface considering the high network switching
cost of P2P network interfaces.

• Remote Adapter Control: The network switching function
is required to control the P2P network adapters on remote
peer devices.

• Socket-Like User-Level API: The selective connection
systems must provide applications with socket-like user-
level communication API to get messages directly from
various applications.

• Programmability: The selective connection systems must
be programmable to support various network adapters and
network selection policies.

In this article, to meet the aforementioned requirements,
we propose a virtual connection system that comprises vir-
tual socket API and virtual connection manager, as shown
in Fig. 1(c). The virtual connection API enables applications
to describe what messages to transfer whereas the virtual
connection manager determines how to transfer the messages.

The virtual socket API completely decouples applications
from the network connection operations so that the applica-
tions can send or receive messages without considering the
underlying network connections. Since the virtual socket API
is a user-level API, the virtual connection system can hook
any user message and forward it to the selected user-level
P2P network service daemon. The virtual socket API is also
designed to be similar to the Internet socket API, and thus
various applications can use it. It also provides an additional
function to enable applications to pass their contexts to the
virtual connection manager. The network selection policy in
the virtual connection manager predicts the future workload
with the user context.

The virtual connection manager is a user-level daemon that
provides all the required functions of selective connection
to support P2P network devices. It provides programming
interfaces to add new network adapters and network selec-
tion policies. It can also control the remote network adapters
through remote control messages.

Compared to our earlier work [7], the proposed virtual
connection system is designed with the consideration of the
characteristics of P2P network devices. The virtual connec-
tion system additionally provides the socket-like user-level
API to support various applications. In addition, new network
adapters and network selection policies can be easily added to
the virtual connection system via the programming interfaces.

In the case study presented in this article, we demon-
strate how the selective connection can be easily implemented
through the virtual connection system in wearable consumer
electronics which have Bluetooth and WFD interfaces. We
implemented a context-aware network selection policy that
can predict the future network traffic based on the application
context. We show that the context-aware network selection

policy can reduce the communication energy consumption of
wearable consumer electronics by up to 2.31 times.

II. BACKGROUND AND RELATED WORK

A. Characteristics of P2P Networks

Some P2P networks support power save modes (PSMs) to
reduce energy consumption during idle time. For example,
Bluetooth supports a sniff mode [16]. Wi-Fi Direct (WFD)
can use the PSM of classic Wi-Fi by the help of additional
PSM techniques for WFD group owners [17]. Device drivers
usually detect the idleness of a network interface and put the
interface into a PSM without disconnecting the user-level con-
nections. The device driver of WFD in PSM can awaken the
network interface if there are pending messages, whereas the
driver cannot awaken the network interface in the sleep mode.

Each P2P network shows a different energy efficiency in
PSM. For example, Bluetooth sniff mode is several times more
energy-efficient than the PSM of Wi-Fi or WFD [6], [14].
Therefore, if there is no data transmission through the network
connection for a while, it is more energy-efficient to destroy
WFD connection rather than to use the PSM.

Meanwhile, WFD has a high network switching cost.
Especially, establishing WFD connection takes a long time and
shows high power consumption. Even if a WFD interface uses
the autonomous group formation method, which has the short-
est connection latency, it must perform several operations such
as discovery, Wi-Fi protected setup (WPS) provisioning, and
address configuration to establish WFD connection [17]. For
example, our measured latency for WFD connection between
an embedded board and a smartphone was about 5.4 seconds.
In addition, establishing WFD connection consumes about
13.2 times more power compared to the Bluetooth idle state
power consumption. Therefore, to reduce the overall energy
consumption of selective connection systems, the high-cost
WFD connection must be chosen only when it is predicted
that many messages will be transferred over a long period.

B. Selective Connection Systems

There are several researches to support multiple heteroge-
neous network interfaces at consumer electronics. For exam-
ple, the protocol adaptation layer (PAL) between Bluetooth
and ultra-wideband (UWB) has proposed for high definition
video transmission [18]. However, it has a strong dependency
on the specific network interfaces requiring significant mod-
ifications in both hardware and software. Since it does not
support automatic network selection, applications must make
explicit network selection commands to change the network
interface.

To solve such a problem of manual network selection, sev-
eral selective connection systems have been proposed [5]–[8].
These systems are compared with our virtual connection in
Table I. MPWear [5] is a selective connection system to
support smartwatch applications connected to the Internet
via Wi-Fi or Bluetooth with a minimal energy consumption.
CoolSpots [6] enables wireless mobile devices to connect to
access points through either Wi-Fi or Bluetooth to save power.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

302 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 66, NO. 4, NOVEMBER 2020

TABLE I
COMPARISON OF SELECTIVE CONNECTION SYSTEMS

Network Virtualization [7] is our prior work, which imple-
ments a selective communication between IoT devices via
Bluetooth or Wi-Fi Direct. WearDrive [8] is a remote storage
framework for wearable devices, which communicates with
the paired smartphone via Bluetooth LE or WFD.

As shown in Table I, the previous selective connection
systems provide all the required functions: network selection,
network switching, and seamless handover. However, they did
not consider the characteristics of P2P networks. For example,
the network switching functions in MPWear and CoolSpots do
not provide the remote adapter control, so they cannot acti-
vate or deactivate P2P network interfaces on the peer device.
This is because they target Internet-connected devices. In addi-
tion, MPWear and CoolSpots get communication messages by
hooking them from the kernel-level network protocol stack,
and thus it is difficult to apply them to P2P devices which use
various application-level protocol stacks.

In contrast, WearDrive can be applied to the P2P devices
since it provides the remote adapter control and the user-
level API. However, WearDrive uses only the proprietary
API functions designed for specific applications. For exam-
ple, WearDrive provides InsertKV(), ReadKV(), and
DeleteOldData() for the remote key-value storage appli-
cations. It also provides RegisterForSensor() for the
remote sensor storage applications.

Since the network selection functions in the previous tech-
niques [5]–[8] do not support the workload prediction, they
cannot consider the high network switching cost of P2P
networks. Besides, they also do not provide any program-
ming interface functions to add network selection policies and
network adapters.

Unlike the previous techniques, our proposed virtual con-
nection is designed with considering the characteristics of
P2P networks. For the purpose, in the virtual connection, the
network selection function provides the workload prediction,
and the network switching function supports remote adapter
control. To minimize the modifications on P2P network pro-
tocol stacks, the virtual connection communicates with user
applications via user-level API. Since the virtual connection
API is socket-like, it can support various applications without
significant changes of applications. In addition, a new network

Fig. 2. Architecture of the virtual connection system. The boxes with
dashed borders denote programmable modules, and the boxes with solid bor-
ders denote non-programmable modules. The white boxes denote user-level
modules whereas the grey boxes denote kernel-level modules.

adapter can be easily integrated to the virtual connection and
it is easy to implement a new network selection policy.

III. OVERALL ARCHITECTURE

The overall architecture of the virtual connection system is
shown in Fig. 2. It consists of the virtual socket API and the
virtual connection manager. Basically, the virtual socket API
allows applications to send or receive messages to or from a
peer device through any wireless network. More details of the
virtual socket API will be presented in Section IV.

The virtual connection manager selects the most suitable
network connection and controls the activation of underlying
network connections. Because the virtual connection manager
is a user-level daemon, the network adapters can communicate
with other user-level network daemons such as BlueZ [15] or
wpa_supplicant [19] through IPC. Detailed descriptions of the
virtual connection manager will be given in Section V.

A. Data Transmission

The virtual connection allows applications to send or receive
messages to or from their peer devices without being aware of
the underlying network connection. As shown in Fig. 2, the
application first opens a virtual socket and sends messages
to the virtual connection manager through the virtual socket
API (①). Each message is split into fixed size segments, which
are inserted into the segment queues (②). The segment queues
are used for the seamless handover between different network
interfaces. Each segment can be sent through different network
adapters, depending on the current connection status (③). The

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

HONG AND SHIN: VIRTUAL CONNECTION: SELECTIVE CONNECTION SYSTEM FOR ENERGY-EFFICIENT WEARABLE CONSUMER ELECTRONICS 303

network adapter sends the segments to the peer device through
the network-specific kernel-level modules or user-level dae-
mons (④). For example, the Bluetooth network adapter sends
segment transmission requests to the kernel-level Bluetooth
module through the RFCOMM [16] socket API. The WFD
network adapter sends the segment transmission request to
the mac80211 module via the Internet socket API. For the
BLE transmission, segment transmission requests are sent to
BlueZ [15] supporting GATT profile [20].

For incoming segments through a network connection, the
network adapter puts the segments into the segment queue,
where the split segments are reassembled into the original
message (⑤). Owing to the message assembly function of the
segment queue, the segments of a message can be transferred
via different network adapters, and thus the seamless handover
can be supported (⑥).

The incoming messages must be sent to the correspond-
ing application. Each message has a virtual socket name in
its header field. From the virtual socket table, the virtual
connection manager can find which application is associ-
ated with the virtual socket. The virtual connection manager
sends the message to the target application process through
IPC (⑦).

B. Network Connection Control

After launching the virtual connection manager, the network
adapter controller (NAC) establishes a connection through
the most power-efficient network interface such as Bluetooth.
After that, the NAC can change the network connection in
response to the request of the network selection policy.

As shown in Fig. 2, an application can pass its context
as a hint to the network selection policy through the virtual
socket API (❶). The network selection policy selects a network
that can achieve the minimum energy consumption based on
the application context and system status. When the network
connection has to be changed, the NAC makes a new con-
nection in the selected network and closes the connection of
the currently connected network (❷). To control the network
connections, the NAC issues control commands to the local
network adapters (❸). Each local network adapter controls its
own network connections through the associated network dae-
mons (❹) and kernel-level drivers (❺). The NAC also sends
a remote control message to the remote network adapter on
the peer device in the same way the data message is delivered
to the peer device (❻-❾). When the NAC on the peer device
receives the remote control message, it changes the states of
network interfaces to be activated or deactivated through local
control commands (❸-❺).

IV. VIRTUAL SOCKET API

Table II shows the list of virtual socket API functions.
The virtual socket API includes several functions to send or
receive messages to or from the peer device through a virtual
socket. To make a connection with a peer device, applications
must first open a virtual socket by calling open(). The virtual
socket is an endpoint for sending or receiving messages in P2P

TABLE II
LIST OF VIRTUAL SOCKET API FUNCTIONS

Fig. 3. An example of virtual socket API usage in a video streaming
application.

networks. A virtual socket is identified by its name, which is
specified by the application. In the example of Fig. 3, a camera
streaming application creates a virtual socket with the name of
video_frame. Then, it calls send() to send a message to the
application running on the peer device or receive() to receive
a message. In the example, a video frame is sent to the peer
device through send(). The virtual socket API is designed to
be similar to the existing Internet socket API functions. The
only difference is that a virtual socket name is used instead of
an IP address as a socket’s identifier.

To enable the network selection policy to predict the future
network traffic, the virtual socket API also provides the func-
tion of send_application_context(), through which applications
can pass their contexts to the network selection policy in the
virtual connection manager. Applications tend to generate sim-
ilar patterns of network traffic depending on the application
context. In this article, the application context represents the
application mode initiated by a user input event. For example,
the News application [3] on a smartwatch generates a burst
of network traffic to download a list of articles and thumbnail
pictures when its refresh button is clicked. When the hyperlink
of each article is clicked, a different pattern of network traffic
is generated to download the article’s contents and photos. In
the virtual connection system, applications can pass their con-
texts to the underlying virtual connection manager. Because
the Internet socket API functions used by MPWear [5] and
CoolSpots [6] call the kernel system calls, many modifications
are required in both user space and kernel space to add the
context passing function. In contrast, the virtual socket API is
at the user level, so it is not difficult to add the hint-passing
function.

In the example shown in Fig. 3, the application sends
the on-streaming context to the network selection policy.
While the application runs, the network selection policy pro-
files the network traffic in this context. The profiling result is
used by the network selection policy to predict future network
traffic when the application re-enters the context.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

304 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 66, NO. 4, NOVEMBER 2020

V. VIRTUAL CONNECTION MANAGER

A. Segment-Based Message Transfer

As shown in Fig. 2, each message is split into multiple
segments, each of which can be transmitted through different
network connections for the seamless handover.

The messages are categorized into two types: data mes-
sages and remote control messages. Whereas data messages
are made by applications, remote control messages are gen-
erated by the NAC to control the network adapters on peer
devices.

When the virtual connection manager receives a user mes-
sage via send(), it adds a message header that contains the
length of the message payload and the target virtual socket.
The length of the message payload is used to reassemble the
original message from its segments at the peer device. The
target virtual socket is used to identify the virtual socket on
the peer device where the message is delivered.

The segment is the minimum data unit that can be trans-
ferred through a network connection. Each segment has a
segment header that contains the length, type, and more-
segment-flag of the segment. The segment type can be control
segment or data segment, and is determined according to
the message type. The more-segment-flag indicates whether
it is the last segment in a message or not, similar to the
more-fragment-flag in IP [21].

The virtual connection manager maintains four segment
queues: control-send, control-receive, data-send, and data-
receive. The segment queues for control segments are sepa-
rated from the data segment queues in order to give a higher
priority to the control segments over the data segments.

During a network switching, the previous network adapter
continues to transfer the segments until a new network adapter
is connected. Once the new network adapter starts to handle
segments, the previous network adaptor is deactivated.

B. Network Selection Policy

The network selection policy module retrieves the current
system information such as the network throughput of each
network adapter and the length of each segment queue. It can
also receive the context of the current application. Based on
this information, the network selection policy decides whether
the network connection must be changed or not. If the network
connection must be changed, the network selection policy
sends a network switching request to the network adapter
controller (NAC) and the NAC controls the network adapters.

The virtual connection system provides a programming
interface for the network selection policy, which includes a
callback function, select_network(). This function, which is
periodically called by the virtual connection system, will select
the most appropriate network considering the system status
and the application context. The system developer can change
the network selection policy only by changing the function.

C. Network Adapters

The network adapters are responsible for controlling
each network connection and transferring segments over the
network connection. As shown in Table III, each network

TABLE III
FUNCTION LIST OF NETWORK ADAPTER INTERFACE

Fig. 4. State transition diagram of network adapter (a) on master device and
(b) on slave device.

adapter must have the control and segment transmission
functions of the network adapter interface.

As shown in Fig. 2, when the NAC receives a network
switching request from the network selection policy, the NAC
sends local control commands to the target local network
adapter and the network adapter calls its own corresponding
control functions. To change the power mode of the remote
network interface on the peer device, the NAC also sends
remote control messages to the peer device. When the NAC
of the remote device receives the remote control messages, it
calls its own control functions.

The virtual connection system manages the state change
of each network adapter, as shown in Fig. 4. There are six
different network adapter states: switched-off, ready, listening,
discovering, P2P-connected, and socket-connected. We define
a device that advertise itself as a master device, whereas slave
device is defined as a device that discover the master device.

Initially, each network adapter is in the switched-off state,
indicating that the adapter is not switched on. When the
virtual connection manager is launched, the NAC calls
the switch_on() functions of all the network adapters and the
adapters transit to the ready state.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

HONG AND SHIN: VIRTUAL CONNECTION: SELECTIVE CONNECTION SYSTEM FOR ENERGY-EFFICIENT WEARABLE CONSUMER ELECTRONICS 305

To activate a network connection, the NAC calls several
control functions of the network adapter and changes the state
of the network adapter as follows: First, start_master() on the
master device or discover() on the slave device is called. After
that, the network adapter on the master device listens for dis-
covery requests from the slave device in the listening state.
The network adapter on the slave device starts to discover the
master device in the discovering state. After the slave device
finds a master device, it calls connect() to make a P2P con-
nection. If the P2P connection is successfully established, the
network adapters on the master and slave devices reach the
P2P-connected state. When a socket connection between the
peer devices is established by open(), the network adapters
attain the socket-connected state.

If there is no message traffic, network adapters need to put
the network interface into a PSM or sleep mode. However,
due to the high power consumption of WFD in PSM, we
change the WFD interface into the sleep mode. Therefore,
WFD interface enters ready state after both the socket and
P2P connections are closed by the close(), disconnect(), and
stop_master() functions. On the other hand, when Bluetooth
is not used, the Bluetooth adapter must transit to the P2P-
connected state by closing the socket connection through
close() function. This is because many Bluetooth device
drivers support the sniff mode, but maintaining socket connec-
tions of both Bluetooth and WFD adapters causes interference
between the adapters while degrading the network bandwidth.

The segment transmission functions, send() and receive(),
of the network adapter are called by two background threads,
a sender thread and a receiver thread. The sender thread pops
a segment from the send segment queues and calls send() to
send it. The receiver thread calls receive() to receive a segment
and pushes it to the receive segment queues.

VI. CASE STUDY: CONTEXT-AWARE NETWORK

SELECTION POLICY

Previous selective connection systems such as MPWear [5],
CoolSpots [6], and Network Virtualization [7] use a
throughput-aware policy as their network selection policy, in
which a network is selected based on the present network
throughput. However, the throughput-aware policy does not
consider the high network switching cost of P2P networks.
In this article, we propose a context-aware policy that predicts
the future network traffic based on the application context. We
implemented the throughput-aware policy [5] and the context-
aware policy using the proposed network selection policy
interface.

Fig. 5 shows an example implementation of the context-
aware policy. The function select_network() receives the
network system status (st) and the application context
(ctx) as input parameters. The context-aware policy pre-
dicts the future network traffic (tf) by referring to
the network traffic profiling result. The waiting segments
(st.waiting_segments) in the segment queues are also
added to the future network traffic.

Based on the predicted future network traffic, the network
selection policy estimates the future energy consumption

Fig. 5. An example of a context-aware network selection policy.

TABLE IV
CHARACTERISTICS OF THE TEST APPLICATIONS OF WEARABLE

CONSUMER ELECTRONICS USED FOR THE EXPERIMENTS

for different network connections. A linear regression-based
power model is used to predict the power consumption for
different network throughput values and the connection status
of the network adapters. The network selection policy selects
the network that will consume the minimum energy.

VII. EVALUATION

A. Experimental Setup

1) Application Workload Trace: For experiments, we col-
lected several application workload traces from two types of
wearable consumer electronics, i.e., smartwatch, and smart-
glasses, as shown in Table IV. We used a commercial smart-
watch equipped with a dual-core mobile CPU and 512 MB
memory. It has 802.11-n and Bluetooth 4.0 network interfaces.
We downloaded three applications [2]–[4] from an on-line
application market and ran them respectively on the smart-
watch for 250 seconds.

For the smartglasses, we implemented our own prototype by
using an embedded board equipped with a quad-core mobile
CPU and 1 GB memory. The smartglasses prototype has an
embedded radio module with 802.11-n support, and it has a
Bluetooth 4.0 adapter attached via a USB Bluetooth dongle.
For the smartglasses prototype, we implemented two compan-
ion applications [10], video streaming (VS) and remote storage
(RS) [8], based on a companion device software platform [22].
For experiments, VS sent the packets of a 240p resolution
video continuously for 360 seconds, and RS sent 60 image
files, of which size is 327 KB on average, over 360 seconds.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

306 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 66, NO. 4, NOVEMBER 2020

We executed the two applications simultaneously on the smart-
glasses prototype. The wearable devices were connected to a
commercial smartphone with a quad-core mobile CPU and a
4 GB memory through Bluetooth or Wi-Fi Direct connections.

An application workload trace includes the sequence of
network packets and application contexts. The network pack-
ets were obtained by sniffing packets transmitted over wireless
networks from the target devices through a widely used
network protocol analyzer, Wireshark [23].

We also defined the types of application contexts for each
application and added the contexts to the application traces.
For example, the Web browser application (Web) has the con-
text of navigate-page. The news application has the contexts of
refresh-article-list and load-article-contents. The map applica-
tion has the contexts of panning, zoom-in, and zoom-out. The
video streaming application uses on-streaming as its appli-
cation context, and the remote storage application has the
contexts of file-read and file-write.

2) Testbed System: The collected traces were replayed in a
testbed system to evaluate the effect of the virtual connection.
The testbed system is same to that used for workload trac-
ing. In the experiment, the smartwatch or smartglasses played
the role of the master device, and the smartphone was the
slave device. We implemented four different network selection
policies: BT-only (Bluetooth-only), WFD-only, throughput-
aware [5], and our context-aware policy. The BT-only policy
used only the Bluetooth adapter, and the WFD-only policy
used only the WFD adapter. We have made the source code of
the virtual connection for the testbed system publicly available
at https://github.com/SKKU-ESLAB/Virtual-Connection.

B. Communication Energy Consumption

Fig. 6(a) shows a comparison of the communication
energy consumption for the different network selection poli-
cies. Throughout all the workloads, the context-aware policy
showed the minimum energy consumption with 1.26-2.31
times energy savings compared to the throughput-aware pol-
icy. This energy saving was mainly due to the future traffic
prediction scheme of the context-aware policy. Because the
throughput-aware policy considered only the current network
traffic, on average, it invoked network switching 2.25 times
compared to that invoked by the context-aware policy, as
shown in Fig. 6(b). The excessive network switching resulted
in higher energy consumption.

In the Web browser and map workloads, which had low
peak request bandwidths, the virtual connection selected the
Bluetooth connection most of the time. Therefore, the context-
aware and the BT-only policies showed similar results.

Although Bluetooth generally shows lower power consump-
tion than WFD, the BT-only policy consumed more energy
than the WFD-only policy for the smartglasses workload
(VS+RS). As shown in Table IV, the smartglasses workload
consists of the video streaming application generating low
network traffic and the remote storage application generating
burst network traffic. Therefore, when the two applications ran
simultaneously, the BT-only policy showed longer communi-
cation time and a large amount of energy consumption. In

Fig. 6. (a) Communication energy consumption; (b) total network switch-
ing count for each application. The communication energy consumption is
normalized to the energy consumption of the context-aware policy.

Fig. 7. Network throughput when the News application [3] ran with different
network selection policies: (a) throughput-aware; (b) context-aware.

contrast, the context-aware policy always showed better results
than the other policies for all the workloads by dynamically
selecting the most efficient network connection depending on
the change in request traffic.

C. Network Switching

As shown in Fig. 7, we measured the variance in network
throughput while running the news application workload.
During the periods of 70-75 s, 210-220 s, and 235-250 s,
the application tries to send small amount of messages
but it exceeded the maximum Bluetooth bandwidth. The
throughput-aware policy selected WFD whereas the context-
aware policy did not switch the network connection. Because
the throughput-aware policy monitored only the instantaneous

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

HONG AND SHIN: VIRTUAL CONNECTION: SELECTIVE CONNECTION SYSTEM FOR ENERGY-EFFICIENT WEARABLE CONSUMER ELECTRONICS 307

network throughput, it did not consider the total network traf-
fic over a long period when switching networks. On the other
hand, the context-aware policy selected the network based
on the application context, i.e., Bluetooth in load-article-
contents context and WFD in refresh-article-list context. As a
result, the context-aware policy reduced the number of network
switching.

VIII. CONCLUSION

In this article, we proposed a novel selective network
connection system for wearable consumer electronics called
virtual connection that dynamically changes the network
interface, to minimize the communication energy consump-
tion. The virtual connection provides a virtual socket API
that allows applications to use the selective connection system
without considering the network connection details. Because
the virtual connection manager is a programmable user-level
daemon, a system designer can easily modify the network
selection policy and add new network adapters. To demon-
strate the virtual connection system, we implemented a
context-aware network selection policy for wearable consumer
electronics using P2P communications and showed that the
context-aware policy resulted in an energy saving of up to 2.31
times compared to the policies of previous selective connection
systems.

REFERENCES

[1] W.-R. Yang, C.-S. Wang, and C.-P. Chen, “Motion-pattern recognition
system using a wavelet-neural network,” IEEE Trans. Consum. Electron.,
vol. 65, no. 2, pp. 170–178, May 2019.

[2] Naver. (2019). Naver Map. Accessed: Aug. 22, 2019. [Online].
Available: https://galaxystore.samsung.com/geardetail/GjEbuFc12C

[3] Samsung Electron. (2019). News Briefing. Accessed: Aug. 22, 2019.
[Online]. Available: https://galaxystore.samsung.com/geardetail/com.
samsung.w-magazine-wc1

[4] C. Jeon. (2019). Gear Browser. Accessed: Aug. 22, 2019. [Online].
Available: https://galaxystore.samsung.com/geardetail/com.fin10.tizen.
gearbrowser

[5] X. Zhu, Y. E. Guo, A. Nikravesh, F. Qian, and Z. M. Mao,
“Understanding the networking performance of wear OS,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 3, no. 1, pp. 1–25, Mar. 2019.

[6] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots: Reducing
the power consumption of wireless mobile devices with multiple radio
interfaces,” in Proc. 4th ACM Int. Conf. Mobile Syst. Appl. Services
(MobiSys), Jun. 2006, pp. 220–232.

[7] I. Hwang and D. Shin, “Application level network virtualization using
selective connection,” in Proc. IEEE 36th Int. Conf. Consum. Electron.
(ICCE), Jan. 2018, pp. 1–2.

[8] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale, “WearDrive:
Fast and energy-efficient storage for wearables,” in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), Jul. 2015, pp. 613–625.

[9] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui,
“Dandelion: A unified code offloading system for wearable computing,”
IEEE Trans. Mobile Comput., vol. 18, no. 3, pp. 546–559, Mar. 2019.

[10] T. Braud, P. Zhou, J. Kangasharju, and P. Hui, “Multipath computa-
tion offloading for mobile augmented reality,” in Proc. IEEE Int. Conf.
Pervasive Comput. and Commun. (PerCom), Mar. 2020, pp. 1–10.

[11] L. Rachakonda, S. P. Mohanty, and E. Kougianos, “iLog: An intelligent
device for automatic food intake monitoring and stress detection in the
IoMT,” IEEE Trans. Consum. Electron., vol. 66, no. 2, pp. 115–124,
May 2020.

[12] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “DeepWear:
Adaptive local offloading for on-wearable deep learning,” IEEE Trans.
Mobile Comput., vol. 19, no. 2, pp. 314–330, Feb. 2020.

[13] H. Welte, “The netfilter framework in Linux 2.4,” in Proc. Linux
Kongress, 2000, pp. 8–10. Accessed: Apr. 7, 2020. [Online]. Available:
http://archil.fr/Doc_NetFilter/netfilter.pdf

[14] Cypress Semiconductor. CYW43438 Datasheet. Accessed: Apr. 7, 2020.
[Online]. Available: https://www.cypress.com/file/298076/download

[15] M. Krasnyansky and M. Holtmann. (2003). BlueZ: Official Linux
Bluetooth Protocol Stack. Accessed: Apr. 7, 2020. [Online]. Available:
http://www.bluez.org

[16] C. Bisdikian, “An overview of the bluetooth wireless technology,” IEEE
Commun. Mag., vol. 39, no. 12, pp. 86–94, Dec. 2001.

[17] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi direct: Overview and experimentation,”
IEEE Wireless Commun., vol. 20, no. 3, pp. 96–104, Jun. 2013.

[18] Y. Jeon, S. Lee, S. Lee, S. Choi, and D. Y. Kim, “High definition
video transmission using Bluetooth over UWB,” IEEE Trans. Consum.
Electron., vol. 56, no. 1, pp. 27–33, Feb. 2010.

[19] Linux WPA/WPA2/IEEE 802.1X Supplicant. Accessed: Apr. 7, 2020.
[Online]. Available: http://hostap.epitest.fi/wpa_supplicant

[20] Bluetooth Core Specification 4.0, Bluetooth SIG, Kirkland, WA, USA,
Jul. 2010.

[21] B. A. Forouzan, TCP/IP Protocol Suite, 4th ed. New York, NY, USA:
McGraw-Hill, 2006.

[22] H. Lee, D. Sin, E. Park, I. Hwang, G. Hong, and D. Shin, “Open software
platform for companion IoT devices,” in Proc. IEEE 35th Int. Conf.
Consum. Electron. (ICCE), Jan. 2017, pp. 394–395.

[23] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal Network
Protocol Analyzer Toolkit, Rockland, MA, USA: Syngress, 2006.

Gyeonghwan Hong received the B.E. degree
in computer engineering from Sungkyunkwan
University, Suwon, South Korea, in 2013, where
he is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering.
His research interests include embedded software,
mobile system software, and Internet of Things.

Dongkun Shin (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
Seoul National University, Seoul, South Korea,
in 2004. He is currently a Professor with the
Department of Electrical and Computer Engineering,
Sungkyunkwan University, Suwon, South Korea.
From 2004 to 2007, he was a Senior Engineer
with Samsung Electronics, South Korea. His
research interests include embedded software, low-
power systems, computer architecture, and real-time
systems.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 28,2020 at 07:31:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

