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Abstract—Network quantization is an effective compression
technique of deep neural networks (DNNs) for on-device machine
learning at consumer devices. Existing layer-wise quantization
techniques allocate different bitwidths to different network lay-
ers. In this paper, we propose a filter-wise quantization technique
based on the differentiable neural architecture search (DNAS).
We use a two-level network structure and a novel candidate
generation algorithm, which can substantially prune the large
search space. The effectiveness of our technique was validated
with MobileNetV2 on ImageNet.

I. INTRODUCTION

As deep neural networks (DNNs) have shown exceptional
performance in various fields, many deep learning-based appli-
cations are emerging for consumer devices [1]. To achieve high
accuracy, DNNs require more than millions of parameters and
billions of floating-point operations (FLOPs). Therefore, it is
hard to run DNNs on resource constrained consumer devices.

Several network compression techniques have been pro-
posed to solve this problem. Quantization uses low bitwidths
of weights and activations to compute DNNs, and thus sig-
nificantly reduce memory and computational cost. Recently-
proposed layer-wise or filter-wise quantization techniques,
where a different bitwidth is used for each network layer [2]
or convolution filter [3], can compress the network further
than using a single bitwidth over all layers and filters. One
challenge is how to determine an appropriate bitwidth of each
layer or filter. Previous studies [2], [3] used a reinforcement
learning (RL)-based neural architecture search (NAS), where
the training and evaluation for network architecture must be
performed repeatedly resulting in an enormous amount of
training time.

In this paper, we propose an efficient filter-wise quantization
scheme based on the differentiable neural architecture search
(DNAS) [4], which considers the search space as continuous
and explores it using a gradient descent technique. To use
the DNAS technique for filter-wise quantization, we propose
a two-level network search and an efficient candidates gener-
ation algorithm.

II. METHODOLOGY

Among various DNAS algorithms, we adopted FBNet [4]
for our filter-wise quantization. For each network layer, multi-
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Fig. 1. The overall flow of the proposed technique.

ple architecture candidates with different bitwidths of weights
and activations (e.g., 4-bit weights and 3-bit activations) are
generated. Each candidate has a sampling probability and only
one candidate per layer is sampled based on the sampling
probability and the selected architecture is executed in the
forward propagation. To consider both the network accuracy
and the execution latency on the target device, we use the
following loss function of the architecture a:

L(a) = CE(a) · α log(LAT(a))β (1)

CE is the cross entropy loss, and LAT is the execution latency
of the network on the target device. To get the latency value
during the network architecture search, a latency lookup table
is pre-built in advance, which provides the latencies at different
bitwidths of weights and activations. The sampling probability
is continuous, so the loss is differentiable to the sampling
probability. Therefore, we can train the sampling probability
also while training the network.

Fig. 1 shows the entire flow of our network search scheme,
which consists of a high-level trainer and a low-level trainer.
With a pretrained model, the predetermined number of candi-
dates are generated for each layer, each of which uses different
bitwidths of weights and activations (Ê). The high-level trainer
trains the network with the candidates to get the layer-wise
bitwidths (Ë). After the network training, the high-level trainer
gets a layer-wise bitwidth policy by sampling the candidates,
and then pass it to the low-level trainer (Ì). With the layer-
wise bitwidth policy, the low-level trainer generates the filter-
wise candidates, each of which allocates a different bitwidth



to each filters. At the low-level trainer, the activation bitwidth
is set to be same to that of the transferred policy. The weight
bitwidth of the transferred policy is used as a total budget of
all the filters in a layer.

To generate filter-wise quantization candidates at the low-
level trainer, the quantization sensitivity of the n-th filter in
the l-th layer is defined as follows:

Cl,n =
wmaxl,n − wminl,n + ε

(κl)bl,n
(2)

wmaxl,n and wminl,n are the minimum and maximum absolute
values of the target filter, respectively. ε is a noise value
sampled from the normal distribution ε ∼ N (0, σ2) for each
candidate. bl,n is the bitwidth assigned to the target filter, and
κ, called the quantization efficiency parameter, is related to
the amount of change on quantization error according to the
assigned bitwidth. To get the value of κ, we directly measured
the quantization errors of each layer at several different
bitwidths of the pretrained model and used an exponential
regression with the measured values.

The low-level trainer assigns the filter-wise bitwidth of
each candidate as follows: First, we define the bitwidth range
of filters, bmin to bmax. Then, each filter in a candidate is
assigned with bmin of bitwidth, and its quantization sensitivity
C is calculated. Until the average bitwidth of all the filters in a
candidate reaches the budget, the low-level trainer repeatedly
adds 1-bit to the filter which has the largest C and its assigned
bit is not larger than bmax while updating C of each filter. This
step is performed for all candidates in each layer.

After the candidate generation, the low-level trainer trains
the network by sampling candidates (Í). After training, a
candidate is sampled for each layer and it becomes one of the
candidates for the next training. If the same set of candidates at
network layers are sampled during several times, the training
has been converged and the candidates can be determined as
the final quantization policy.

Our technique can find good filter-wise candidates due to
the quantization sensitivity-based generation. In addition, it
can effectively explore the search space with the noise value.
To ensure the convergence, we reduce the value of σ, which
is associated with ε, as the search step iterates.

III. EXPERIMENTS

To compare several quantization techniques, we used Mo-
bileNetV2 on ImageNet. The original model accuracy is
71.81%. To measure the latency of the multi-bit quantized
network, we run the quantized model at a PYNQ-Z2 FPGA
board. We used our-implemented bit-wise operation accelera-
tor [5] at the FPGA board.

Fig. 2 shows the trade-offs between latency and accuracy
at several different quantization techniques. Fixed uses the
same bitwidth at all layers and all filters. Layer is the
layer-wise quantization technique. We used HAQ [2] bitwidth
allocation policy. Filter is our filter-wise quantization tech-
nique. Filter shows better latency-accuracy trade-offs than

Fig. 2. Latency and accuracy comparison of different quantization methods.

TABLE I
ACCURACY COMPARISON OF FIXED AND LAYER-WISE VALUE OF κ

Type of κ Activation Weight Accuracy (%)
fixed 3.77 4.35 59.54

layer-wise 60.13
fixed 3.93 5.86 64.17

layer-wise 64.53
fixed 6 5.78 70.32

layer-wise 70.58

Layer and Fixed. The difference is more significant at
lower latency models.

Table I shows the effect of layer-wise κ. Whereas different
κ values were used at different layers in layer-wise
technique, fixed used the same value of κ at all layers. The
layer-wise κ shows a higher accuracy.

IV. CONCLUSION

We proposed a filter-wise quantization technique based on
DNAS. The large search space of the filter-wise quantization
can make the network training difficult and can require a
long training time. To effectively explore the search space,
we proposed a two-level searching scheme and an efficient
filter-wise candidate generation method.
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