
mStream: Stream Management for Mobile File System Using
Android File Contexts

Yunji Kang
Sungkyunkwan University

Suwon, Korea
oso41@skku.edu

Dongkun Shin∗
Sungkyunkwan University

Suwon, Korea
dongkun@skku.edu

ABSTRACT
The Flash-Friendly File System (F2FS) is a widely-used mobile file
system. Since it is a log-structured file system (LFS), its segment
cleaning operation is a performance bottleneck. To reduce clean-
ing overhead, F2FS uses the multi-head logging technique, which
enables user to write different lifetimes of files into different seg-
ments. Currently, F2FS adopts the file-extension-based separation
technique. However, it is difficult to predict the lifetime of a file
only with the file extension information. In this paper, we ana-
lyze the lifetime of each directory of Android mobile application
to make a lifetime prediction policy based on directory name and
file extension. Each Android application is implemented using a
standard Android library and manages files in a similar directory
structure. As a result of the analysis, we identified that a single
directory contains the file with similar lifetimes. Based on the anal-
ysis, we propose a new stream management technique for F2FS,
called mStream, which separates the directories with different life-
times into different segments. At the experiment, mStream reduced
the segment cleaning cost by up to 35% compared to the original
F2FS.

CCS CONCEPTS
• Computer systems organization → Embedded systems;Ar-
chitectures;

KEYWORDS
Flash memory, Multi-streamed SSD, Log-structured file system,
Segment cleaning

ACM Reference Format:
Yunji Kang and Dongkun Shin. 2021. mStream: Stream Management for
Mobile File System Using Android File Contexts. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3412841.3442115

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8104-8/21/03.
https://doi.org/10.1145/3412841.3442115

100

1000

10000

100000

.db .apk .exo .jp* .mp* .odex .png .so

H W C

L
if
e

ti
m

e
 (

s
e

g
m

e
n

t)

Lifetime average

Figure 1: Lifetime Distribution of F2FS

1 INTRODUCTION
Storage performance has been recognized as one of the signifi-
cant factors that affect the application performance for mobile
devices [4, 6–8]. Mobile device uses a flash memory-based storage
system such as embedded multimedia card (eMMC) and universal
flash storage (UFS). To make flash-friendly write requests, a log-
structured file system (LFS) [9] is a good solution since it generates
only sequential writes. When there is an update on files, LFS writes
it at the newly allocated free space called segment. These invali-
dated blocks become holes in segments and have to be reclaimed
by segment cleaning. Because lots of copy operation occurs from
cleaning, reducing the cleaning overhead is the most important
part of LFS performance optimization.

Flash-Friendly File System (F2FS) [10], one of the LFS, is widely
used for mobile platforms. F2FS provides multi-head logging so that
the data with a similar lifetime will be placed in the same segment
to reduce cleaning overhead. F2FS supports file-extension-based
separation technique which classifies data to HOT, WARM, and COLD.
For example, database files with .db extension are assigned through
HOT segment while executable files such as .apk and .odex are as-
signed at COLD segment. In Figure 1, .exo file, which is the video
cache file, is frequently updated similar to the files in WARM but F2FS
allocates .exo file at COLD segment. Also, all files without any exten-
sion are allocated at WARM segment, so some HOT cache files are also
included. By this observation, the file-extension-based separation
technique is not enough to reflect the file lifetime precisely.

In mobile platform, especially in the Android platform, each ap-
plication store its files on the formalized structure of a directory, as
shown in Figure 2. As a result of the analysis, the mobile application
has a characteristic of storing files with similar purposes in the same
directory, so files in the directory have a similar lifetime. This paper
proposes mStream, which provides semantic-aware streammanage-
ment for mobile, by augmenting the file-extension-based semantic
to directory-based semantic stream management. For mStream,

https://doi.org/10.1145/3412841.3442115
https://doi.org/10.1145/3412841.3442115
https://doi.org/10.1145/3412841.3442115


SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Yunji Kang and Dongkun Shin

/data/com.facebook.katana /app/com.facebook.katana

/data

/app_

webview
/cache

/code_

cache
/databases /files

/shared_

prefs

/exoplayercache /compactdisk /Newsfeed /graph_cursor

/app_

analytics

Figure 2: Facebook Application Directory Structure

we first collect the traces from the popular mobile workloads and
measure each file’s lifetime, directories, and file extensions. Based
on this observation, we calculate the lifetime similarity between
directory depth and lifetime difference inside the same directory.
And then, we found the optimal point of file grouping and assigned
each group to the same segment. These steps repeatedly occur in
run-time so that mStream can dynamically adapt to the sudden
change of the user’s application usage pattern.

2 LIFETIME ANALYSIS
Android applications are implemented based on the Android
library so that the directory structure of application data is
similar to each other. Android application files are stored in
the /data/app/[package] and /data/data/[package] direc-
tories of the data partition as shown in Figure 2. In the
/data/app/[package], the executable files and library files are
stored. In the /data/data/[package], there are sub-directories
such as /shared_prefs, /app_webview, /code_cache, /cache,
/databases, and /files.

• /shared_prefs contains the SharedPreferences objects.
• /app_webview contains Webview data that displays web con-
tent in the application. .

• /code_cache contains cached code.
• /cache contains the cache files that temporarily store the
data required for the application.

• /databases contains the SQLite database file.
• /files contains other related files for application. (e.g. con-
figuration, cache, font, etc.)

2.1 Environment Setup
In the measurement, we use a Google Nexus 5 to collect file
usage patterns of the application. The kernel version and An-
droid version of the smartphone is 3.10.73 and 7.11, respectively.
We collect the system call trace to analyze which files are cre-
ated/removed/updated. By a small fix of the Android device kernel,
we enable the ftrace tool and trace the open, create, unlink, mkdir,
rmdir, fsync, rename, write, link, truncate, fallocate, and mmap sys-
tem calls with the system call arguments. File operation is collected
from the VFS layer. For the mmap case, we gathered the write trace
when a dirty page of memory invokes the file system to deliver a
write request into the storage device.

We collected various workloads from popular applications
from the social networking, game, web browser, and web-
based application. We selected total 14 applications which are
Twitter, Instagram, Facebook, Trivago, Airbnb, Ebay, Amazon,

0% 20% 40% 60% 80% 100%

Amazon

CNN

Facebook

CNN

CNN

Subway Surfers

/app_compactdisk

/app_overtheair

/a
p
p
_

w
e

b
v
ie

w
/c

a
c
h
e

/f
ile

s
a
p
p
-

s
p
e
c
if
ic

Write RatioEXEC1 EXEC2 EXEC3

EXEC4 EXEC5 COLD

EXEC n = Invalidated after n times application execution

Figure 3: /data/data/[package] Sub-directory Lifetime
Analysis

0% 20% 40% 60% 80% 100%

chomium cache dir

image cache dir

/apptentive

/httpcache

/c
a

c
h
e

/f
ile

s

C
N

N

Write Ratio
EXEC1 EXEC2 EXEC3

EXEC4 EXEC5 COLD

Figure 4: Depth-2 Directory Lifetime Analysis (CNN)

Aliexpress, CNN, Angry Birds, Clash Royale, Subway Surfers,
Firefox. From these applications, we obtain the system call trace
of installing apk, execution(EXEC) application with 5 different sce-
narios, update(UPDATE) to a newer version with Google Play, and
uninstalling the application from the device.

2.2 Directory Lifetime Analysis
The files in /data/app/[package], which contains the executable
and library files, are updated simultaneously while the applica-
tion UPDATE is triggered. For each /data/data/[package] sub-
directory, we chose the applications based on the number of
writes, and illustrated the lifetime distribution on Figure 3. The
/app_webview stores the web contents to be displayed so that the
files are updated when the application is executed. However, other
directories such as /files, and /cache shows a mixed pattern of
various lifetime. It means that simply grouping the files within the
same directory can cause significant overhead to the storage device.

We distinguish the hot-cold distribution analysis on the deeper
sub-directory for the /files and /cache, which show the
mixed pattern of various lifetime data. We assume that the
/data/data/[package] as a base (Depth-0) and the sub-directories
directly located on /data/data/[package] (e.g., /cache, /files)
as Depth-1, and the same method was repeated to define the depth
value for each directories. For the CNN case, EXEC1/2 and COLD are
50:50 ratio shown in Figure 3, but for Depth-2 analysis in Figure 4,
most of the EXEC1 category files are placed at /apptentive. Other



mStream: Stream Management for Mobile File System SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Table 1: TheWeighted Arithmetic Mean of Lifetime Similar-
ity

Depth-1 Depth-2 Depth-3

/cache 0.62 0.66 0.66
/files 0.60 0.79 0.80

app-specific dir 0.58 0.64 0.64

write (fd, data)

Multi-Streamed Mobile Storage

Application

Segment 

Type

AllocatorLifetime

Identifier
Clustering

Fgroup Manager

unlink (path)

PATH

TYPE ID

Update lifetime

Checkpoint Block allocator

TYPE ID

Write (LBA) Write (LBA)

Cleaning
COLD

File System

openStream (SEG, TYPE ID)

Figure 5: mStream Architecture

cases show similar observations, so that the in-depth analysis of
the sub-directory level is useful.

We quantified the lifetime distribution correlation of files within
the same directory through the similarity function described below.

𝑆𝑑𝑖𝑟 = max(𝑊 (𝑇 ))
where T is a lifetime type (e.g., EXECn, UPDATE, COLD),W(T) is a write
ratio of data corresponding to T lifetime. Table 1 is the weighted
arithmetic mean of lifetime similarity, with the amount of write
for each directory as a weight value. For /cache, /files, and app-
specific directory, by choosing the Depth-2 directory, similarity
factor increases 6.5%, 31.8%, 10.8% in average. Unfortunately, simi-
larity factor of /cache is not that increased in Depth-3 compared
to Depth-2, because /cache rarely contains the Depth-3 directories.
Also, deeper depth causes the increase of investigation directories,
which are directly matched to the stream. Choosing too deep depth
for analysis can waste the stream resource. Therefore, Depth-2 is a
good selection, and we choose this value for mStream.

3 DESIGN
Our key insight was that, the directory structure of the applica-
tions is similar in mobile applications. Moreover, the frequently
accessed directory tends to have distinct lifetime patterns. We pro-
pose mStream, the novel architecture of managing stream by con-
sidering both file extension and the directory structure, which help
file lifetime estimation. According to our analysis result, mStream
provides a grouping methodology of files with similar lifetime. The
group of files with similar file semantics (e.g. file extension, file
PATH) is abbreviated as fgroup.

Figure 5 shows the overall organization of mStream. The as-
sumed multi-streamed mobile storage provides a new API called
openStream(Segment #, Type ID) which notify storage of the type ID
allocated by each segment. When a write request is issued, the seg-
ment type allocator passes the file PATH to the fgroup manager, and
the segment type ID is returned from the fgroup table. In the block

Chrome 

EXEC

Facebook

 traceAngrybird

UPDATE

System Call

Trace

User Scenario
- APP EXEC, UPDATE cycle

Trace Replay Tool

File System (F2FS)

Host-FTL (pblk)

OC-SSD (qemu-nvme)

KERNEL

DEVICE

System Call

Figure 6: Evaluation Setup

allocator, data is allocated to the current segment corresponding to
the segment type ID.
Assigning fgroup. In the previous section, we analyzed the lifes-
pan of the files in the application directory. As a result, we catego-
rized data into fgroups in five ways as follows.

• File extension (e.g., .db-journal, .png)
• /data/app/[package]
• /data/data/[package] sub-directory (e.g., /app_webview)
• /data/data/[package]/cache sub-directory
• /data/data/[package]/files sub-directory

Lifetime Prediction. mStream manages fgroup table for the life-
time prediction of fgroup. Each fgroup entry keeps track of the
invalidation history of files, which are included in fgroup. We use
the exponential moving average(EMA) for estimating fgroup life-
time as follow:

𝐸𝑀𝐴𝑇 = (1 − _)𝐸𝑀𝐴𝑇−1 + _𝐿𝑇

which 𝐿𝑇 is the lifetime of Tth invalidate data, and 𝐸𝑀𝐴𝑇 is an
EMA of fgroup after Tth invalidate.

When the root directory of fgroup is unlinked, the fgroup man-
ager removes the corresponding fgroup entry in fgroup table. Our
investigation found a special case that the application deleted the
directory and re-created the same directory. The Fgroup manager
manages fgroup history table that stored information of recently
removed fgroup. The fgroup manager searches the fgroup history
table when a new fgroup is created and reuses the lifetime infor-
mation if the history exists.
Clustering. After estimating lifetimes of fgroups, the fgroup man-
ager attempt to cluster fgroups with similar predicted lifetime into
segment type because F2FS supports a limited number of segment
types. To classify fgroup, the fgroup manager uses K-means [5],
which is a widely used clustering algorithm. We use the difference
of the moving average lifetime between two fgroups as a clustering
distance. To adapt changing user workload, the fgroup manager
performs the clustering process periodically.

4 EXPERIMENT
4.1 Setup
To evaluate the performance of mStream, we implemented a host
FTL supporting multi-stream on open-channel SSD (OC-SSD). The
host-level FTL used in our implementation was pblk [3]. Figure 6
illustrates our evaluation setup. Our evaluation setup consists of a
server with an Intel Xeon E5-2630 v3 (2.40 GHz, 16 cores) and 32 GB



SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Yunji Kang and Dongkun Shin

Table 2: Experimental Scenario

Workload A Workload B

Number of Applications 7 22
EXEC Cycle 0.13-5.1 days 0.13-5.1 days
UPDATE Cycle 7 days 7 days

Initial Multimedia Size 3.8GB 2.4GB
Multimedia Update Size 40MB per a day 25MB per a day

0.0

0.2

0.4

0.6

0.8

1.0

Workload A Workload BN
o
rm

a
lie

d
 C

o
p
ie

d
 B

lo
c
k
s

ORG-3 M-3 M-4 M-5 M-6

Figure 7: Impact of Multi-Stream Technique

DRAM. The Linux kernel version is 4.13.0. A qemu-based emulator,
qemu-nvme [1], was used to emulate the OC-SSD. The OC-SSD
emulation environment is as follows: 16 LUNs(Logical Unit Number,
which is organized in planes, blocks, and pages), four planes, 4GB
block, 16KB page, 4KB sector. We implemented mStream scheme
on F2FS and configured the F2FS section size as 16MB that equal to
the physical superblock size of OC-SSD.

We perform experiments using a mobile workload generator
called the trace replay tool. The system call trace, which is the
trace replay tool’s input, is collected from the system call tracer on
real-world smartphones. System call traces for install, execution,
update, and uninstall were collected from various applications. We
perform experiments using the workload of two user scenarios, and
user scenarios are as shown in Table 2.

In the experiment, we compare the original F2FS and mStream.
The F2FS format tools use f2fs-tools 1.4 version [2]. In the mStream,
the _ value of EMA was set to 0.3.

4.2 Impact of Multi-Stream Technique
Figure 7 shows the cleaning costs of F2FS and mStream. We vary
the host stream number limit of mStream from 3(M-3) to 6(M-6). For
both workloads, mStream outperforms the original F2FS by up to
32% while adapting the same stream number limit. As the number
of streams increases, mStream can classify data in a fine-grained
manner, which improves cleaning efficiency.

To evaluate the effect of stream management, we measured per-
stream lifetime distribution under workload B. Figure 8 shows the
average and variance of data lifetime. First of all, we compared the
original F2FS and mStream with 3 streams(M-3). Stream 0 of ORG-3
has a higher lifetime variance than stream 0 of M-3. Because for
ORG-3 case, stream 0 contains both .db-journal and .db together
whose lifetime distribution is different. M-3 has a higher lifetime

100

1000

10000

100000

0 1 2 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

ORG-3 M-3 M-4 M-5 M-6

L
if
e

ti
m

e
 (

s
e
g

m
e

n
t)

Figure 8: Lifetime Distribution

similarity of data of each stream compared to ORG-3. Stream 0
in M-3 gathers hotter data than ORG-3. Moreover, stream 2 also
stores colder data than ORG-3. If the number of streams increases
in the mStream technique, hot and warm data are more classified
precisely.

5 CONCLUSION
This paper proposed mStream, a novel stream management tech-
nique based on file lifetime and I/O pattern on mobile platforms.
mStream predicts file lifetime based on a directory structure and
file extension. We implement mStream on top of the open-channel
SSDs and reduce the cleaning costs. We observe that the directory
depth analysis is important to handle the stream allocation and
successfully merge this scheme on top of the F2FS. By using our
mStream, we can reduce up to 35% of cleaning cost.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT) (No.
2020R1F1A1073758)

REFERENCES
[1] 2018. qemu-nvme. https://github.com/OpenChannelSSD/qemu-nvme
[2] 2020. f2fs-tools 1.4. https://github.com/jaegeuk/f2fs-tools
[3] Matias Bjørling, Javier González, and Philippe Bonnet. 2017. LightNVM: The

Linux Open-Channel SSD Subsystem. In Proc. of the 15th USENIX Conference on
File and Storage Technologies (FAST ’17). 359–374.

[4] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin Chang, Inhyuk Yee, Liang
Shi, Chun Jason Xue, and Jihong Kim. 2017. Improving File System Performance
of Mobile Storage Systems Using a Decoupled Defragmenter. In Proc. USENIX
Annu. Tech. Conf.

[5] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) 28, 1 (1979), 100–108.

[6] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won.
2013. I/O Stack Optimization for Smartphones. In Proc. USENIX Annu. Tech. Conf.
309–320.

[7] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei Zhu, Yu Liang, Tei-Wei
Kuo, and Chun Jason Xue. 2020. Inspection and characterization of app file usage
in mobile devices. ACM Transactions on Storage (TOS) 16, 4 (2020), 1–25.

[8] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. 2012. Revisiting Storage
for Smartphones. In Proc. of the 10th USENIX Conference on File and Storage
Technologies (FAST ’12). 1–25.

[9] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and
Satoshi Moriai. 2006. The Linux Implementation of a Log-structured File System.
ACM SIGOPS Operating Systems Rev. 40, 3 (Jul. 2006), 102–107.

[10] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS:
A New File System for Flash Storage. In Proc. 13th USENIX Conference on File and
Storage Technologies (FAST ’15). 273–286.

https://github.com/OpenChannelSSD/qemu-nvme
https://github.com/jaegeuk/f2fs-tools

	Abstract
	1 Introduction
	2 Lifetime Analysis
	2.1 Environment Setup
	2.2 Directory Lifetime Analysis

	3 Design
	4 Experiment
	4.1 Setup
	4.2 Impact of Multi-Stream Technique

	5 Conclusion
	Acknowledgments
	References

