
Received September 5, 2020, accepted October 7, 2020, date of publication October 12, 2020, date of current version October 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030214

Segment-Based Multiple-Base Compressed
Addressing for Flexible JavaScript
Heap Allocation
GYEONGHWAN HONG AND DONGKUN SHIN , (Member, IEEE)
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Dongkun Shin (dongkun@skku.edu)

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2017-0-00914).

ABSTRACT Many Internet-of-Things (IoT) systems use lightweight JavaScript engines to support easy
programming in microcontrollers. Lightweight JavaScript engines use several techniques for memory
optimization, such as static heap reservation and compressed addressing. Recent IoT systems also use several
external libraries and a larger on-chip memory to support abundant functionalities, such as machine learning
and connectivity. However, as the JavaScript heap space is not resizable owing to the memory optimizations,
the JavaScript engine or an external library is prone to fail the memory allocation in these devices.
To address this problem,we propose a flexiblememory optimization technique, segment-basedmultiple-base
compressed addressing (SMBCA), which compresses a pointer indicating a JavaScript object allocated to a
resizable heap based on multiple base addresses. SMBCA comprises two components: a dynamic segment
allocator (DSA) and a multiple-base compressed address translator (MBCAT). DSA dynamically allocates
the JavaScript heap in segment units. Meanwhile, MBCAT converts a low-bitwidth address into a full-
bitwidth address and vice versa, based on the multiple base addresses. To reduce the address compression
overhead of MBCAT, we propose a software cache technique, reverse map cache (RMC). We found that the
SMBCA reduces average memory usage by 43.9% compared to the existing lightweight JavaScript engines
when running SunSpider benchmarks, V8 benchmarks, and real-world applications. We also showed that the
RMC reduces the average address compression latency of MBCAT by 34.9% when running the SunSpider
benchmarks.

INDEX TERMS Compressed addressing, Internet of Things, JavaScript, memory management,
microcontroller.

I. INTRODUCTION
Internet-of-things (IoT) systems require low power consump-
tion, low cost, and small form factors. Thus, many IoT sys-
tems use low-end devices, such as microcontrollers (MCUs).
As presented in Table 1, the MCUs usually include an ARM
Cortex-M CPU or ARM Cortex-R CPU and a wide range of
on-chip memory (SRAM: from 128 KB to 4.5 MB).

Recently, two trends exist in these low-end devices. First,
for the easy programming of IoT applications, MCUs run
a lightweight interpreter engine that can support dynamic
programming languages, such as JavaScript and Python. For

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wu .

example, Espruino [1] operates on various boards, such as
Espruino Pico with 96 KB of SRAM and Espruino WiFi
with 128 KB of SRAM. Further, IoT.js [2], Duktape [3], and
MicroPython [4] also support various boards.

Second, to support abundant functionality, such as
DNN-based machine learning [5]–[8] or IoT connectivity
standards [9], [10], several external libraries have been used
by recent low-end devices. As these libraries use large
buffers, such as intermediate feature map buffers [5]–[8] or
request message buffers [9], [10], they require a large amount
of memory space. Therefore, to use these libraries within the
limited memory capacity of the MCUs, the libraries intro-
duce buffer management optimization techniques [7]–[10]
or DNNmodel compression techniques [5]–[8]. For example,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 185405

https://orcid.org/0000-0002-7903-0100
https://orcid.org/0000-0001-7235-7787
https://orcid.org/0000-0003-2483-6980


G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

TABLE 1. State-of-the-art low-end devices used for IoT systems.

CMSIS-NN uses a feature map buffer optimization, referred
to as partial-im2col, and a model compression technique,
referred to as 8-bit quantization, to reduce the peak memory
usage to hundreds of KB [7]. In addition, IoTivity Lite,
which supports OCF-standard-based connectivity, improves
the request message buffer management to reduce the peak
memory usage to 68.72 KB [10]. Despite the memory opti-
mization techniques, these libraries still require large buffers.
Therefore, recent IoT systems use also low-end devices
equipped with large on-chip memories, as demonstrated
in Table 1.

To run JavaScript applications with a small memory
capacity, lightweight JavaScript engines [1]–[3] use memory
optimization techniques, such as compressed addressing and
static heap reservation. Compressed addressing is a tech-
nique that expresses a pointer indicating to a JavaScript object
with a low-bitwidth address by specifying the constraints of
the JavaScript heap. For example, Fig. 1(a) shows an example
of IoT.js [2]. In this example, a contiguous memory space of
less than 512 KB is allocated to the JavaScript heap. Subse-
quently, IoT.js manages the heap in an 8B-aligned block unit
and allocates blocks directly to a JavaScript object. Further,
it can express a pointer that indicates the object with a 16-bit
address by defining the address as an offset from the base
address of the heap. IoT.js applies the compressed addressing
to all the pointers inside the JavaScript object, which reduces
the minimum JavaScript object size from 16 B to 8 B.

Static heap reservation is a scheme that reserves mem-
ory space for the entire JavaScript heap. Through the static
heap reservation, the JavaScript engine can allocate memory
space directly to an object. Owing to the direct memory
allocation, it can manage metadata of the memory space
directly. As the type of a JavaScript object determines its size,
the JavaScript engine can store only the object’s type instead
of its size. Therefore, the static heap reservation can reduce
the metadata’s size created when the engine allocates a space
to an object.

However, a JavaScript engine reserves a large amount of
memory space regardless of the heap usage when it uses
the static heap reservation. Thus, when the JavaScript engine
and external libraries run simultaneously, they are prone
to fail memory space allocation, which is called an over-
provisioning problem. To address this problem, the heap
must be resizable in proportion to the number of objects.

FIGURE 1. Comparison of JavaScript memory optimization techniques;
(a) IoT.js [2] (SBCA with static heap reservation), (b) SBCA with dynamic
segment allocation, (c) SMBCA (MBCA with dynamic segment allocation).

To implement a resizable heap with minimal metadata,
JavaScript engines can use dynamic segment allocation,
which allocates the heap in fixed-size segment units.

To execute a JavaScript application and external libraries
simultaneously on a low-end device, the JavaScript engine
must use both dynamic segment allocation and compressed
addressing. However, a JavaScript engine merely combin-
ing the two techniques cannot support SRAM of more than
512KB. In this case, the low-bitwidth address cannot indicate
all the objects in the memory. If the block size is 8B and a
pointer is represented with 16-bit, maximum heap size that
can use the 16-bit pointer is 512KB. Fig. 1(b) shows an exam-
ple where JavaScript objects are allocated to five segments on
an SRAM space larger than 512 KB. As segment S5 is outside
the range of 512 KB from the base address, a 16-bit address
cannot point to the object in S5. This is because the existing
compressed addressing maps a low-bitwidth address to a full-
bitwidth address using only a single heap base address. We
call this compressed addressing as single-base compressed
addressing (SBCA).

In this study, we propose multiple-base compressed
addressing (MBCA) to address the SBCA’s problems. MBCA
is a compressed addressing scheme that maps a low-bitwidth
address to a full-bitwidth address based on multiple segment
base addresses. In MBCA, a low-bitwidth address pointing to
a JavaScript object is defined as a combination of a segment
index and a block offset. The segment index is the identifier
of the segment containing the object. The block offset is the
difference between the segment base address of the segment
and the full-bitwidth address pointing the object.

As the segment size and maximum heap size are config-
ured, the segment index and the block offset can be expressed
with small bitwidths. Multiple segment base addresses allow

185406 VOLUME 8, 2020



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

the low-bitwidth address to indicate any JavaScript object
allocated to a memory of any size. For example, we assume
that a JavaScript engine uses the dynamic segment allocation,
the block alignment size of the engine is 8 B, the segment
size is 2 KB, and the maximum heap size is 512 KB. In this
case, because the segment index and block offset can be
expressed with 8 bits respectively, a 16-bit address can indi-
cate any object in the SRAM larger than 512 KB. As shown
in Fig. 1(c), the MBCA enables a 16-bit address to indicate
an object in S5.
Compressed addressing requires two types of address

translation operations; address decompression and address
compression. Address decompression is an operation to con-
vert a low-bitwidth address into a full-bitwidth address.
Address compression is an operation to convert a full-
bitwidth address into a low-bitwidth address. In MBCA,
address translation must determine which segment a low-
bitwidth address or a full-bitwidth address indicates. At
this time, the JavaScript engine must use the mapping
metadata between the segment index and segment base
address. It results in more memory accesses of metadata and
longer address translation latency than in SBCA. Therefore,
the MBCA requires an optimized address translator that
reduces the address translation latency.

In this study, we propose segment-based multiple-base
compressed addressing (SMBCA), a JavaScript heapmanage-
ment scheme that uses both the dynamic segment allocation
and the MBCA. SMBCA enables the JavaScript engine to
resize its heap while using the compressed addressing within
a memory of any size. The JavaScript engine can run together
with external libraries on a low-end device with a minimal
memory footprint of the JavaScript objects. SMBCA consists
of two sub-modules: dynamic segment allocator (DSA) and
multiple-base compressed address translator (MBCAT). DSA
is a module responsible for segment allocation and dealloca-
tion. MBCAT is a module that performs address translation
based on multiple segment base addresses.

In addition, we propose a reverse map cache (RMC),
an optimization technique to reduce the address compression
latency of MBCAT. The RMC is a software cache of the
mapping metadata between a segment base address and a
segment index. The RMC reduces memory accesses required
for the address compression by using the segment access
locality of the JavaScript application.

We implemented IoT.js-SMBCA, a variant of IoT.js [2],
using SMBCA. In the experiment, we compared
IoT.js-SMBCA to existing JavaScript engines on a Raspberry
Pi 3 and an Artik 053. For the experiment, we executed Sun-
Spider [11] and V8 [12], well-known JavaScript benchmarks,
on the two devices. We also ran three real-world applications
on Artik 053. The experimental results show that the IoT.js-
SMBCA used 43.9% less memory than the existing engines
on average. The results also show that the RMC reduces
the address compression latency by 34.9% on average and
reduces SMBCA execution-time overhead from 26.1% to
19.9% in the SunSpider benchmark.

TABLE 2. Comparison of the memory optimization options of lightweight
JavaScript engines.

II. BACKGROUND
A. LIGHTWEIGHT JavaScript ENGINES
The lightweight JavaScript engine is an interpreter engine
that runs JavaScript applications on low-end devices with
limited computing resources and memory resources. Sev-
eral lightweight JavaScript engines, such as JerryScript [2],
Duktape [3], and Espruino [1], have been proposed previ-
ously. IoT.js is a JavaScript engine that adds an event loop
and I/O APIs to the JerryScript [2].

The lightweight JavaScript engines introduce as few
performance optimization techniques as possible because
such techniques create an additional memory footprint. For
example, IoT.js introduces a snapshot, an ahead-of-time
compile for built-in JavaScript functions to reduce the ini-
tialization latency. However, many performance optimiza-
tion techniques such as inline caching [13], hidden class,
and just-in-time compile, which are widely used in high-end
JavaScript engines such as V8 [14], are not adopted by the
lightweight JavaScript engines.

B. MEMORY OPTIMIZATION OF LIGHTWEIGHT
JavaScript ENGINES
Lightweight JavaScript engines adopt many memory opti-
mization techniques to reduce the memory footprint. As pre-
sented in Table 2, the JavaScript engines provide several
memory optimization options.

The IoT.js’s default option (IoT.js-Def) [2], Espruino’s
default option (Esp-Def) [1], and Duktape’s lowmem
option (Duk-Low) [3] are options for low-end devices, which
use static heap reservation and SBCA. JavaScript engines
based on static heap reservation prevent the allocation of
JavaScript objects from requiring additional metadata. How-
ever, because they require to reserve a large amount of SRAM
space, an over-provisioning problem occurs.

VOLUME 8, 2020 185407



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

FIGURE 2. Structure of a JavaScript object in IoT.js [2].

SBCA reduces the memory footprint of JavaScript applica-
tions by reducing the sizes of the pointers that occupy a large
portion of JavaScript objects. For example, as shown in Fig. 2,
JavaScript objects in IoT.js-Def [2] contain at least three
pointers. If heap size is 512 KB and block size is 8 B, each
pointer can be expressed with 16 bits through compressed
addressing. Therefore, the compressed addressing reduces
the minimum memory footprint of an object from 16 B to
8 B. In Duk-Low [3] and Esp-Def [1], the sizes of objects
vary because the structure of the JavaScript objects is differ-
ent. Using the compressed addressing, Duk-Low reduces the
minimum object size from 32 B to 20 B, whereas Esp-Def
reduces the size from 28 B to either 12 B or 16 B depending
on the heap size.

Meanwhile, Duktape and Espruino provide options for
a resizable heap. Duktape’s default option (Duk-Def) uses
dynamic object allocation, which allocates heap in the object
unit. Espruino’s resizable option (Esp-Res) uses dynamic
segment allocation that allocates heap in segment units.
However, because no address translator exists that allows
JavaScript engines to use both dynamic segment allocation
and compressed addressing, Esp-Res does not reduce the
memory footprint of JavaScript objects.

If a JavaScript engine merely uses the combination of
dynamic segment allocation and SBCA, as shown in Fig. 1(b),
a resizable heap can be implemented while reducing the
memory footprint of JavaScript objects. However, in this
case, the JavaScript engine cannot indicate all the objects
outside the range of 512 KB from the base address. There-
fore, in this study, we propose SMBCA, a heap management
scheme that manages the heap in segment units and com-
presses the pointers using multiple segment base addresses
within a memory of any size. SMBCA enables the JavaScript
heap resizable through dynamic segment allocation and
reduces the size of JavaScript objects through compressed
addressing.

III. RELATED WORK
Several lightweight JavaScript engines, such as Espruino [1],
IoT.js [2], and Duktape [3], have been proposed, which run
JavaScript applications within the small memory constraints
of MCUs. They can run in MCU as they minimize the size
of JavaScript objects through memory optimization such as
compressed addressing and static heap reservation.

FIGURE 3. Architecture of SMBCA.

Several studies on the optimization of lightweight
JavaScript engines have been proposed. Duktape+ is an
optimized variant of Duktape which uses several perfor-
mance optimizations of built-in functions and reduces the
binary size of built-in objects through a lazy construction
technique [15]. MoMIT is a multi-objective optimization
technique that searches the most appropriate Duktape option
that satisfies both the target device’s constraints and the target
application’s functional requirements [16]. WebletScript is a
Duktape-based automatic code slicing engine that distributes
and executes a JavaScript-based IoT application across mul-
tiple IoT devices [17]. The existing optimization techniques
are orthogonal to our proposed scheme since they focused
on optimizing the engine’s performance or binary size. Since
they assumed that only the lightweight JavaScript engine
runs on the MCU, there are few studies to improve the heap
allocation of JavaScript engines.

IV. DESIGN
A. OVERALL ARCHITECTURE
SMBCA is a memory optimization technique that enables
low-end devices withmemories of any size to ensure that both
resizable heap and compressed addressing are used. Fig. 3
shows the overall architecture of SMBCA. It also comprises
a DSA and anMBCAT. DSA enables the JavaScript engine to
support a resizable heap, whereasMBCAT enables the engine
to use compressed addressing in a memory of any size.

DSA is a module that allocates and manages the JavaScript
heap in segment units. It allocates a new segment when an
application attempts to allocate a new object and cannot find
free space in the currently allocated heap segments. Further,
DSA deallocates a segment when all objects in the segment
are deallocated during garbage collection. This module man-
ages a segment header table containing segment allocation
metadata. More details of DSA are provided in Section IV-B.

MBCAT is a module in charge of address translation based
on multiple segment base addresses. It provides two address
translation operations, referred to as address decompression
and address compression. After the JavaScript engine con-
verts a low-bitwidth address into a full-bitwidth address

185408 VOLUME 8, 2020



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

through address decompression, it accesses the object with
the full-bitwidth address. After the JavaScript engine converts
a full-bitwidth address into a low-bitwidth address through
address compression, it expresses a pointer with the low-
bitwidth address and stores it in the memory space. This
module manages a segment base table and a reverse map tree,
which are the metadata for address translation. In addition,
MBCAT reduces the number of memory accesses during
address compression through an RMC. More details about
MBCAT are provided in Section IV-C.

B. DSA
DSA is a module that allocates a part of the heap in a
segment unit and enables the JavaScript engine to resize the
heap dynamically. It also manages a segment header table
which is metadata to control segment allocation information.
An entry of the segment header table comprises a segment
index, used size, and segment group ID. The segment index
is the identifier of each segment, and the used size is the
sum of the sizes of the blocks allocated inside the segment.
A segment group is a group of segments physically allocated
to consecutive memory spaces, and a segment group ID is
an identifier for each segment group. The segment group ID
allows DSA to allocate an object larger than a segment.

DSA creates a new segment header table entry during
segment allocation and removes an entry from the segment
header table during segment deallocation. Whenever the
JavaScript engine allocates or deallocates blocks, it updates
the used size in the segment header table entry.

When the JavaScript engine attempts to allocate an object
larger than the size of a segment, DSA allocates several
segments to a physically contiguous memory space. Subse-
quently, this module creates segment header table entries for
the segments and sets the same segment group ID to the
entries. When the used size of all the segments in the segment
group becomes zero through garbage collection, all segments
in the segment group are removed.

For example, Fig. 4 shows an example of the JavaScript
heap segments and segment header table when a JavaScript
engine based on SMBCA runs on a device with an SRAM
of 1 MB, such as a Nucleo H743ZI2. In this example,
we assume that the segment size is 2 KB, and the block
alignment size is 8 B. Here, blocks of 7,648 B are allocated
to five segments, and an object of 3 KB is allocated across
segments S1 and S2. In this case, DSA assigns the same
segment group ID to S1 and S2 to ensure that the two segments
are deallocated simultaneously.

C. MBCAT
MBCAT is a module for translating a low-bitwidth address
to a full-bitwidth address or vice versa based on multiple
segment base addresses. It enables the JavaScript engines
to use both compressed addressing and dynamic segment
allocation in devices with memories of any size.

MBCAT provides two address translation operations:
address decompression and address compression. Because

FIGURE 4. Metadata of DSA.

the address translation operations are hot functions that are
called every time an object is accessed, they account for a
large portion of an application’s execution time.

1) ADDRESS DECOMPRESSION
Fig. 5 shows how an address decompression operation works
inMBCAT.MBCATmanagesmetadata called a segment base
table for address decompression. An entry in the segment
base table comprises a segment index and a segment base
address, and each entry is identified by the segment index.
A segment base table entry is created during segment allo-
cation, deleted during segment deallocation, and accessed
during address decompression.

When MBCAT receives a low-bitwidth address, it extracts
the segment index and block offset from the low-bitwidth
address. When the low-bitwidth address size is lL , the seg-
ment size is lS , and the block alignment size is lB, the most
significant lL − (log2(lS )− log2(lB)) bits in the low-bitwidth
address is the segment index, and the least significant
log2(lS ) − log2(lB) bits is the block offset. In the example
of Fig. 5, lL is 16, lS is 2048 B, and lB is 8 B. In this
case, the most significant 8 bits of the low-bitwidth address
is the segment index, and the least significant 8 bits is the
block offset. MBCAT accesses the segment base table with
using the segment index as a key and obtains the segment
base address. Subsequently, this module calculates the full-
bitwidth address using the segment base address and block
offset.

2) ADDRESS COMPRESSION
Fig. 6 shows how an address compression operation works in
MBCAT. First, MBCAT identifies the segment indicated by
the full-bitwidth address and obtains the segment index and
segment base address. Subsequently, it also obtains the block
offset by calculating the difference between the full-bitwidth
address and the segment base address. Finally, MBCAT cal-
culates a low-bitwidth address by combining the segment
index and the block offset.

VOLUME 8, 2020 185409



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

FIGURE 5. Address decompression in MBCAT.

FIGURE 6. Address compression in MBCAT with an RMC.

As a full-bitwidth address does not contain a segment
index, identifying the segment indicated by the full-bitwidth
address requires a search in the segment base table. However,
to prevent a full search on the segment base table, MBCAT
uses additional metadata sorted by segment base addresses,
called a reverse map tree. The reverse map tree is a red-black
tree that sorts reverse map entries based on the segment base
address. Reverse map entry is a pair of segment indices of
the segment base address. MBCAT identifies the segment
indicated by the full-bitwidth address through a binary search
on the reverse map tree.

In the worst case, address compression requires memory
accesses on log2(N ) reverse map entries when the number of
segments is N . Meanwhile, address decompression requires
a memory access to only one entry in the segment base table.
Accordingly, many memory accesses to the metadata make
address compression significantly slower than the existing
JavaScript engine, resulting in a deteriorating application
execution time.

3) RMC
In this study, we propose an optimization technique, based
on the segment access locality of a JavaScript applica-
tion, to reduce the address compression latency of MBCAT.
Address compression occurs when a pointer represented with
compressed addressing is updated. In JavaScript engines,
the main causes of pointer updates are the object allocation
and object deallocation. In lightweight JavaScript engines
such as IoT.js [2], blocks are allocated in a first-fit man-
ner. Therefore, object allocation or deallocation occurring at
similar times increase the probability of accessing the same
segments. In this study, we propose an RMC, a software cache
for reverse map entries based on the segment access locality.

In general, if a software cache is designed as a fully asso-
ciative cache or a set-associative cache, the cache creates
multiple memory accesses. To avoid the multiple memory
accesses, the RMC is designed as a direct-mapped cache. An
entry of RMC is a reverse map entry, and the index of the
RMC is the most significant 32−log2(lS ) bits of full-bitwidth
addresses. The size of the RMC can be configured at compile
time.

During address compression, MBCAT accesses the RMC
and obtains a reverse map entry corresponding to the index.
Then, MBCAT compares the given full-bitwidth address with
the segment base address in the entry. If the full-bitwidth
address indicates the segment indicated by the reverse map
entry, a cache hit occurs. Otherwise, a cache miss occurs.
In the case of a cache hit, MBCAT performs address com-
pression using the reverse map entry obtained from the RMC.
In the case of cache miss, MBCAT uses a reverse map entry
obtained through a binary search.

For example, when compressing a full-bitwidth address
of 0x00022700, as shown in Fig. 6, only one reverse map
entry in RMC is accessed in the case of a cache hit. Mean-
while, in the case of a cache miss, one reverse map entry in
RMC and two reverse map entries in the reverse map tree are
accessed.

V. EVALUATION
A. EXPERIMENTAL SETTINGS
In this study, we implemented IoT.js-SMBCA, a variant of
IoT.js [2], applying SMBCA. We used the September 2017
version of IoT.js. In the experiments, we compared the IoT.js-
SMBCA to several memory optimization options provided by
the existing JavaScript engines shown in Table 2. We used
IoT.js-Def, Esp-Def, Duk-Def, and Esp-Res for the experi-
ments. We excluded Duk-Low from the experiments because
it cannot execute most of the workloads owing to its pool-
based allocator. In particular, Esp-Res is the memory opti-
mization option most similar to our proposed IoT.js-SMBCA.
As many differences exist between Espruino and IoT.js in
the structure of JavaScript objects and garbage collection,
we implemented IoT.js-DSA for a fair comparison. Specif-
ically, IoT.js-DSA is a variant of IoT.js that does not use
the compressed addressing but uses the dynamic segment
allocation.

185410 VOLUME 8, 2020



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

In IoT.js-Def, Esp, and IoT.js-SMBCA, the maximum
heap size is set to 128 KB. Unless otherwise specified,
IoT.js-SMBCA sets the RMC size to 16. Options using
dynamic segment allocation, such as IoT.js-SMBCA and
Esp-Res, set the segment size to 2 KB.

We used a Raspberry Pi 3 and a Samsung Artik 053 for
the experiment. The Raspberry Pi 3 is equipped with a quad-
core 1.2 GHz Cortex-A53 CPU and a DRAMof 512MB. The
Artik 053 is equipped with a single-core 320MHz Cortex-R4
CPU and an SRAM of 1280 KB.

In the experiment, we executed SunSpider bench-
marks [11], V8 benchmarks [12], and real-world applications.
We implemented real-world applications, such as smart-
web-cam, face-door, and lights-after-dark, at first hand.
Real-world applications are implemented under the assump-
tion that the lightweight JavaScript engine and external
libraries [5]–[10] run together. Smart-web-cam recognizes
a keyword by periodically sampling the sound sensor and
the sensor’s value into a keyword-spotting model [6], and
then reports the camera frame to a server when a keyword
is recognized. Face-door periodically inputs a camera frame
into the image classification model [7] to obtain the clas-
sification result. It also transmits an actuation command to
the door lock device. Lights-after-dark periodically reads a
light sensor and notifies another light controller device of an
actuation command if the sensor value is above a pre-defined
threshold.

B. OPTIMAL SEGMENT SIZE
The user memory used by SMBCA consists of three areas:
data block area, free block area, SMBCA metadata area. The
data block area is the area of blocks to store data, such as
JavaScript objects. The free block area is the area of blocks
that do not store anything. JavaScript heap comprises a data
block area and a free block area. The SMBCA metadata area
comprises a segment base table, a reversemap tree, and RMC.
Each segment requires 8 B for the segment header table, 4 B
for the segment base table, and 20 B for the reverse map tree.
The RMC requires 8 B per reverse map entry.

As the lightweight JavaScript engines aim to operate at
small memory capacity, the sizes of the free block area and
the SMBCA metadata area must be minimized. In SMBCA,
when the maximum heap size is fixed, the sizes of the
free block area and SMBCA metadata area change depend-
ing on the segment size. As the segment size increases,
the over-provisioning problem deteriorates, and the free block
area becomes larger. If the segment size becomes extremely
large and is equal to the maximum heap size, the SMBCA
becomes the same technique as static heap reservation.Mean-
while, as the segment size decreases, the number of seg-
ments increases, and the size of the SMBCA metadata area
increases. When the segment size becomes extremely small,
the SMBCA metadata area becomes larger than the free
block area. Between the two extreme cases, an optimal seg-
ment size that minimizes the memory overhead must be
selected.

FIGURE 7. Average user memory size of IoT.js-SMBCA corresponding to
segment size when executing the smart-web-cam application on
Artik 053.

For example, Fig. 7 shows the average user memory
size of IoT.js-SMBCA depending on the segment size when
the smart-web-cam application runs. For this experiment,
we modified IoT.js to measure the size of each area. We veri-
fied the measurement’s accuracy by comparing it to the total
heap size measured through the Valgrind tool. The others area
in Fig. 7 is the difference between the total heap size and the
total size of the three areas.

We measured the total user memory size once every 0.1 s
and used the average of the total user memory sizes as the
average usermemory size. The application shows the smallest
average user memory size when the segment size is 2 KB.
SunSpider benchmarks, V8 benchmarks, and other real-world
applications show a tendency similar to Fig. 7. Therefore,
in this study, the segment size of SMBCA was set to 2 KB.

C. COMPARISON TO EXISTING LIGHTWEIGHT
JavaScript ENGINES
IoT.js-SMBCA shows a smaller user memory size than the
existing JavaScript engines including Espruino [1], IoT.js [2],
and Duktape [3] because it uses compressed addressing and
dynamic segment allocation together. To prove this, we exe-
cuted SunSpider benchmarks [11], V8 benchmarks [12],
and real-world applications on the existing engines and on
IoT.js-SMBCA. We also modified the Espruino and Duktape
to measure each area’s size in the JavaScript heap as we did
on the IoT.js.

When each JavaScript engine executes the application,
we measured the total user memory size once every 0.1 s and
used the average of the sizes as the average user memory size.
Fig. 8 and Fig. 9 show the experimental results. Full-bitwidth
overhead implies the increased amount of the data block
area size caused by not using the compressed addressing.
Duk, Esp-Res, and IoT.js-DSA do not use the compressed
addressing, whereas IoT.js-Def, Esp, and IoT.js-SMBCA do
use it.

Some workloads were not used by some JavaScript
engines. For example, as Esp uses a maximum 6-bit ref-
erence counter, it cannot express the numerous references

VOLUME 8, 2020 185411



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

FIGURE 8. Average user memory size of IoT.js-SMBCA and existing
lightweight JavaScript engines when executing (a) the SunSpider
benchmark or (b) V8 benchmark.

among objects in crypto and deltablue workloads. As Duk
rarely calls garbage collection, the V8 benchmark shows an
average memory usage of several MBs. Because it makes no
sense to compare Duk that shows too much memory usage,
we excluded Duk from the V8 benchmark experiment. Given
that both Duktape [3] and Espruino [1] were not ported to
Artik 053, we used IoT.js-DSA instead.
Given that existing JavaScript engines have differences

in their implementations of garbage collection, the engines
show different data block area sizes. For example, IoT.js-Def,
Esp, and Esp-Res call garbage collection in advance even
when there is enough empty block area. Meanwhile, asDuk is
implemented for a memory-abundant target, it calls garbage
collection only in out-of-memory conditions, resulting in a
larger data block area size than other engines. In addition,
each JavaScript engine has a different structure of JavaScript

FIGURE 9. Average user memory size of variants of IoT.js when executing
a benchmark or a real-world application.

objects. Even if the engines use similar garbage collection
policies, they show different data block area sizes owing to
the structures of the objects.
IoT.js-Def [2] and Esp [1] use single-base compressed

addressing (SBCA) and static heap reservation. Owing to
the SBCA, they can minimize the memory space occupied
by pointers. Meanwhile, they must use the static heap reser-
vation in order to allocate memory space to a JavaScript
object directly, which finally induces over-provisioning prob-
lems. For example, owing to the over-provisioning problem,
IoT.js-Def wastes a free block area of 81.3 KB on average
when running the SunSpider benchmarks and 41.6 KB when
runningV8 benchmarks. Further,Espwastes a free block area
of 82.4 KB in the SunSpider benchmarks on average.

Because Duk uses dynamic object allocation, the over-
provisioning problem does not occur. As Esp-Res [1] uses
dynamic segment allocation, it shows a smaller free block
area size than those of JavaScript engines based on static
heap reservation. However, because bothDuk and Esp-Res do
not apply compressed addressing, the average full-bitwidth
overheads of 19.9 KB and 26.5 KB, respectively, occur in
SunSpider. IoT.js-DSA induces an average full-bitwidth over-
head of 11.1 KB in SunSpider, 15.6 KB in V8, and 12.7 KB
in real-world applications.

The full-bitwidth overhead differs depending on the work-
load in IoT.js-DSA. It is because each workload shows various
characteristics of the data blocks. As shown in Fig. 10, 53.8%
of data blocks, on average, include pointers. Compressed
addressing can reduce the size of these blocks. For example,
as the crypto-sha1workload shows that 53.4% of data blocks
have pointers, its full-bitwidth overhead in IoT.js-DSA is
16.9 KB, as shown in Fig. 8(a).

Because IoT.js-SMBCA uses both dynamic segment allo-
cation and compressed addressing, it shows a smaller user
memory size than the existing engines. As IoT.js-SMBCA
solves the over-provisioning problem using dynamic segment
allocation, it reduces memory usage by 43.9% on average in

185412 VOLUME 8, 2020



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

FIGURE 10. Breakdown of the data block area in IoT.js-DSA. Blocks with
white backgrounds contain pointers, which can be compressed with
compressed addressing. Meanwhile, blocks with grey backgrounds do not
contain pointers.

all workloads compared to other engines based on static heap
reservation, as shown in Fig. 8. Because IoT.js-SMBCA uses
compressed addressing to remove full-bitwidth overhead,
it reduces memory usage by 14.4% on average compared to
IoT.js-DSA as shown in Fig. 9.
In particular, as IoT.js-SMBCA has a smaller data

block size than IoT.js-DSA, IoT.js-SMBCA calls fewer
garbage collections than IoT.js-DSA by 1.35-2.71 times.
For example, as shown in Fig. 11, the data block size in
IoT.js-SMBCA increases more slowly than in IoT.js-DSA
because IoT.js-SMBCA does not include the full-bitwidth
overhead. As IoT.js-SMBCA has a smaller data block size
than IoT.js-DSA, it is harder for the data block size to reach
the garbage collection threshold in IoT.js-SMBCA than in
IoT.js-DSA. In this case, IoT.js-SMBCA shows 89 garbage col-
lections, whereas IoT.js-DSA shows 144 garbage collections
during the period from 5 s to 10 s.

D. ADDRESS TRANSLATION LATENCY
Because SMBCA usesMBCA, the latency of address decom-
pression and address compression is longer than that of
SBCA. In particular, in order to reduce the address compres-
sion latency, we propose RMC.

We measured the number of clock cycles consumed
in address decompression and address compression when
IoT.js-Def or IoT.js-SMBCA executes SunSpider benchmarks
on a Raspberry Pi 3. We used a performance monitoring unit
(PMU) in Raspberry Pi 3 to measure the clock cycles.

In IoT.js-Def, the average number of decompression
cycles is 58 cycles, whereas it increases to 100 cycles in
IoT.js-SMBCA. In the case of address compression, the aver-
age number of compression cycles in IoT.js-Def is 65 cycles,
whereas it increases to 327 cycles in IoT.js-SMBCA. If RMC
is applied to IoT.js-SMBCA, the average number of compres-
sion cycles decreases, as shown in Fig. 12. As the RMC size

FIGURE 11. Data block area size that changes over time in (a) IoT.js-DSA
and (b) IoT.js-SMBCA during the period from 5 s to 10 s when executing
SunSpider’s access-binary-trees workload.

FIGURE 12. Average number of address compression cycles when
IoT.js-SMBCA executes SunSpider benchmark workloads on a Raspberry
Pi 3; (a) access-binary-trees, (b) crypto-sha1, (c) date-format-xparb.

FIGURE 13. (a) Hit ratio and (b) miss penalty of RMC when executing
SunSpider benchmark workloads. Miss penalty is the number of cycles
consumed for accessing the RMC.

increases, the average number of compression cycles further
decreases owing to the increasing RMC hit ratio.

The hit ratio and miss penalty of the RMC differ depending
on the characteristics of the workload. For example, as shown
in Fig. 13(a) and (b), date-format-xparb shows the lower

VOLUME 8, 2020 185413



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

FIGURE 14. Total execution time when IoT.js-SMBCA executes benchmark
workloads. A number written above a bar indicates the relative amount of
execution-time overhead compared to IoT.js-Def; (a) SunSpider on
Raspberry Pi 3, (b) V8 on Raspberry Pi 3, (c) SunSpider on Artik 053.

FIGURE 15. Address translation cycles when IoT.js-SMBCA executes the
SunSpider or V8 benchmark. A number written above a bar indicates the
relative degradation of address translation cycles compared to IoT.js-Def;
(a) access-binary-trees (SunSpider), (b) crypto-sha1 (SunSpider),
(c) date-format-xparb (SunSpider), (d) crypto (V8), (e) deltablue (V8),
(f) raytrace (V8).

hit ratio and the longer miss penalty than access-binary-
trees. Therefore, when the RMC size is 4, access-binary-
trees shows average compression cycles of 234 cycles,
whereas date-format-xparb shows average compression
cycles of 313 cycles. When the RMC size is 16, the hit ratio
of all workloads exceeds 90%, and the average number of
compression cycles converges to 213 cycles, which is 34.9%
less than for IoT.js-SMBCA with no optimization (NoOpt).
Therefore, in this study, the RMC size was set to 16.

Fig. 14 shows the total execution time of several bench-
marks [11], [14] on a Raspberry Pi 3 and an Artik 053
depending on the compressed addressing options, such as

MBCA and RMC. When running SunSpider benchmarks,
IoT.js-SMBCA with RMC shows an average execution-time
overhead of 17.1%, whereas one without the RMC induces
an average execution-time overhead of 23.5%.When running
V8 benchmarks, IoT.js-SMBCA with RMC shows an average
overhead of 19.9%, whereas one without the RMC induces
an average overhead of 26.1%.

The overhead of IoT.js-SMBCA also differs depending on
the number of address translation cycles in each workload.
For example, as shown in Fig. 15, SunSpider’s access-
binary-trees and V8’s deltablue show more address com-
pression cycles than other workloads. Therefore, as shown
in Fig. 14(a) and (b), these workloads have 36% and 27%
execution-time overhead, respectively. By applying the RMC,
the overheads of bothworkloads are reduced to 28% and 18%,
respectively. The improvement in the IoT.js-SMBCA over-
head by the RMC also can be found in Artik 053, as shown
in Fig. 14(c).

VI. CONCLUSION AND FUTURE WORK
Existing lightweight JavaScript engines cannot use resizable
heap as they use memory optimization techniques target-
ing low-end devices equipped with small on-chip memo-
ries. However, as the functional requirements for low-end
devices have increased in recent years, these devices are
being equipped with large on-chip memories and use sev-
eral external libraries for machine learning and connectivity.
In this study, we proposed SMBCA, a memory optimiza-
tion technique of the JavaScript engine suitable for recent
low-end devices. SMBCA not only enables a resizable heap
through dynamic segment allocation, but also enables com-
pressed addressing to be applied to large memory through
MBCA. Experimental results on JavaScript benchmarks
show that IoT.js that applies SMBCA had a 43.9% smaller
memory footprint than the existing lightweight JavaScript
engines, because SMBCA solves the over-provisioning prob-
lem while using compressed addressing. To minimize the
memory accesses during the address compression operation
of SMBCA, we proposed an optimization technique called
RMC. We demonstrated that SMBCA with RMC reduced
the address compression latency by 34.9% on average when
running the SunSpider benchmark on a Raspberry Pi 3 and
an Artik 053. However, the RMC cannot reduce the address
decompression latency. An inline caching technique or a
dedicated hardware for address decompression can be used to
reduce the overhead of SMBCA further. We leave the further
optimization of address decompression as future work.

REFERENCES
[1] Espruino. Accessed: Sep. 4, 2020. [Online]. Available: http://www.

espruino.com
[2] E. Gavrin, S. Lee, R. Ayrapetyan, and A. Shitov, ‘‘Ultra lightweight

JavaScript engine for Internet of Things,’’ in Proc. ACM SIGPLAN Int.
Conf. Syst. Program. Lang. Appl. Softw. Hum., 2015, pp. 19–20.

[3] Duktape. Accessed: Sep. 4, 2020. [Online]. Available: http://www.
duktape.org

[4] Micropython. Accessed: Sep. 4, 2020. [Online]. Available: http://www.
micropython.org

185414 VOLUME 8, 2020



G. Hong, D. Shin: SMBCA for Flexible JavaScript Heap Allocation

[5] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, ‘‘CMix-NN: Mixed
low-precision CNN library for memory-constrained edge devices,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 5, pp. 871–875, May 2020.

[6] Y. Zhang, N. Suda, L. Lai, and V. Chandra, ‘‘Hello edge: Keyword spot-
ting on microcontrollers,’’ 2017, arXiv:1711.07128. [Online]. Available:
http://arxiv.org/abs/1711.07128

[7] L. Lai, N. Suda, and V. Chandra, ‘‘CMSIS-NN: Efficient neural network
kernels for arm Cortex-M CPUs,’’ 2018, arXiv:1801.06601. [Online].
Available: http://arxiv.org/abs/1801.06601

[8] J. Yu, A. Lukefahr, R. Das, and S. Mahlke, ‘‘TF-net: Deploying sub-
byte deep neural networks on microcontrollers,’’ ACM Trans. Embedded
Comput. Syst., vol. 18, no. 5s, pp. 1–21, Oct. 2019.

[9] C. Lee, J. Jo, J. Lee, D. An, J. Cho, and R. Jung, ‘‘RT-OCF: A lightweight
device-to-device framework for the Internet of Things,’’ in Proc. 3rd Int.
Conf. Internet Things (ICIOT), vol. 2018, pp. 179–187.

[10] J. Jo, J. Cho, R. Jung, and H. Cha, ‘‘IoTivity-lite: Comprehensive IoT
solution in a constrained memory device,’’ in Proc. Int. Conf. Inf. Commun.
Technol. Converg. (ICTC), Oct. 2018, pp. 1367–1369.

[11] SunSpider JavaScript Benchmark. Accessed: Sep. 4, 2020. [Online]. Avail-
able: https://webkit.org/perf/sunspider/sunspider.html

[12] V8 Benchmark. Accessed: Sep. 4, 2020. [Online]. Available: https://v8.
dev/docs/benchmarks

[13] L. P. Deutsch and A. M. Schiffman, ‘‘Efficient implementation of the
Smalltalk-80 system,’’ in Proc. 11th ACM SIGACT-SIGPLAN Symp. Princ.
Program. Lang., 1984, pp. 297–302.

[14] V8 JavaScript Engine. Accessed: Sep. 4, 2020. [Online]. Available:
http://v8.dev

[15] M. Kim, H.-J. Jeong, and S.-M. Moon, ‘‘Small footprint JavaScript
engine,’’ in Components and Services for IoT Platforms. Cham,
Switzerland: Springer, 2017, pp. 103–116.

[16] R. Morales, R. Saborido, and Y.-G. Guéhéneuc, ‘‘Momit: Porting a
javascript interpreter on a quarter coin,’’ IEEE Trans. Softw. Eng., early
access, Jan. 22, 2020, doi: 10.1109/TSE.2020.2968061.

[17] D. Li, B. Huang, L. Cui, and Z. Xu, ‘‘WebletScript: A lightweight dis-
tributed JavaScript engine for Internet of Things,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

GYEONGHWAN HONG received the B.E. degree
in computer engineering from Sungkyunkwan
University, Suwon, South Korea, in 2013, where
he is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engi-
neering. His research interests include embedded
software, mobile system software, and the Internet
of Things.

DONGKUN SHIN (Member, IEEE) received the
Ph.D. degree in computer science and engineer-
ing from Seoul National University, Seoul, South
Korea, in 2004. He is currently a Professor with
the Department of Electrical and Computer Engi-
neering, Sungkyunkwan University, Suwon, South
Korea. From 2004 to 2007, he was a Senior
Engineer with Samsung Electronics, South Korea.
His research interests include embedded software,
low-power systems, computer architecture, and
real-time systems.

VOLUME 8, 2020 185415

http://dx.doi.org/10.1109/TSE.2020.2968061

