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Abstract 

 
Recently, NVMe Zoned Namespace (ZNS) 

interface has been proposed to reduce the NAND 
flash management overheads of solid-state drive by 
matching the host interface to internal hardware 
characteristics. For the Zoned Namespace SSD, 
writes must be performed using direct I/O to ensure 
the sequential write order, which may degrade the 
performance of user applications in many cases. In 
this paper, we introduce buffered write support for 
ZNS SSD in Linux kernel I/O stack and implement 
LSM-tree-based key-value store for ZNS SSD to 
analyze the effect of buffered writes. Our evaluation 
shows that buffered writes can reduce the total 
amount of I/O and increase overall performance of 
applications utilizing ZNS SSD. 
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1. Introduction 
 

As flash memory technology has been developed 
and prices have decreased, solid state drives (SSDs) 
are replacing hard disk drives. SSD is widely 
adopted from consumer electronics such as 
smartphones and laptops to high-performance data 
center servers, due to their advantages such as low 
power consumption, high throughput and random 
IOPS. However, SSD periodically performs garbage 
collection (GC) internally to provide a block 
interface, which causes unpredictable performance 
and wears out the NAND lifespan [1]. 

The recently proposed NVMe zoned namespace 
(ZNS) interface can alleviate internal GC by 
exposing the write characteristics of NAND flash 
memory to the host [2]. However, as ZNS provides 
only sequential write interface, the existing file 
system cannot be used, and a dedicated file system 
must be used, or the user application must implement 
its own file system. 

Filesystems that use out-of-place updates such as 
F2FS and Btrfs currently support zoned block 

devices [3, 4]. In addition, LSM-tree-based key-
value store is a suitable workload to utilize ZNS SSD 
at the application-level by performing update using 
only sequential writes [5]. 

If ZNS SSD is used directly in application-level, 
user must use direct I/O to ensure write order [6]. 
Since data is written to the storage by bypassing the 
page cache, even recently written data should be read 
from the storage device, and thus degrade I/O 
performance in most cases. This can be solved by 
implementing a cache at the user-level, but user data 
is often not block aligned and implementing a user-
level cache with good performance is complicated. 

In this study, we modify the Linux kernel's I/O 
stack to support buffered write for ZNS SSD and 
implement the LSM-tree-based key-value store to 
evaluate the effectiveness of ZNS and buffered I/O. 
 
2. Background 
 
2.1. Zoned Namespace SSD 
 

The NVMe zoned namespace can simplify the 
SSD internals and provide predictable performance 
by matching the interface to the characteristics of the 
NAND flash and eliminates internal GC operations. 
Unlike the existing Open-channel SSD that had to 
manage all hardware characteristics such as wear-
leveling of NAND in the host, ZNS is more 
abstraction and exposes only sequential write 
characteristics to the host. Unlike the Open-channel 
SSD, ZNS exposes only write and erase 
characteristics of NAND flash to the host, and 
hardware characteristics such as wear-leveling or 
bad-block management are managed by the device, 
reducing the burden on the host. 

The ZNS interface uses the logical block 
addressing as in the block interface, but LBA is 
divided into fixed size zones, and writes must be 
performed in a sequential order within each zone.  
To reuse a zone, user must explicitly reset the zone 
to erase the contents and make it writable state. 
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2.2. LSM-tree 
 

Unlike the existing index data structures such as 
B-tree, LSM-tree is a write-optimized data structure 
by batching data and writing in a sequential write 
pattern. LSM-tree-based key-value store collects a 
certain amount of new key-value records in 
MemTable, a memory data structure and periodically 
flushes to disk in the form of SSTable. 

Key-value records are sorted in ascending order 
within a single SSTable and organized in several 
levels. To search for an arbitrary record, all  
SSTables with a key range including the target key 
must be searched. LSM-tree periodically performs 
compaction in the background to maintain its 
structure and optimize read performance. The 
background compaction removes obsolete records 
and rearranges the records to create new SSTables. 
 
3. Buffered I/O stack for ZNS 
 

Linux buffered I/O uses the page cache to 
accelerate storage access, by caching recently 
accessed data in DRAM, thus data can be accessed 
without incurring storage I/O. When the user calls 
the write system call, the Linux kernel copies data to 
the page cache and marks it as dirty, and the dirty 
pages are written back later in the background. 

Since writeback is not guaranteed to be performed 
sequentially for each zone, buffered write cannot be 
used for ZNS SSDs and direct I/O must be used [6]. 
However, if direct I/O is used, accessing recently 
written data should be performed from the storage, 
thus resulting in high latency and waste of the SSD 
bandwidth. To solve this problem, we have modified 
Linux kernel I/O stack as follows. 

Page cache writeback. The writeback of the dirty 
pages is performed in sequential order for the LBA 
within each zone.  Additionally, when the user write 
request updates the already written LBA, an error 
occurs to prevent overwrite problem. 

When making a zone into the finish state, the 
dirty page writeback for the zone should precede the 
issue of zone finish command. Therefore, when user 
finishes zone via ioctl system call, zone finish 
command is sent to the device after all dirty pages in 
the corresponding zone are written back. 

I/O scheduler. While page cache writeback is 
performed in sequential order, inversion may still 
occur in request insertion order if synchronous writes 
from users are performed at the same time. Currently, 
Linux deadline I/O scheduler uses per-zone locking 
for zoned block devices to serialize writes to ensure 
only one ongoing write I/O is exists for each zone [6]. 
However, the write command can be delivered to the 
device in the wrong order as it does not guarantee 
command ordering. 

Therefore, we added a zone-aware scheduler  
to guarantee write order by managing write pointers 
in the scheduler. Figure 1 shows the overall 
architecture of I/O scheduler. If the target LBA of 
the dispatch candidate in the write queue does not 
match the offset of the write pointer table of the 
current zone, the request is put into a staged request 
queue. When the write request is completed,  
the write pointer is incremented to point to the next 
write offset, and when user resets zone, the write 
pointer is initialized to zero. 

In the example of Figure 1, the first request of the 
write queue has an offset of 4, but the write pointer 
of the current zone 3 is 3, so the request is switched 
to the stage state. The next request will be dispatched 
since its offset matches to the writer pointer, and 
after the write pointer is advanced, the requests in the 
stage queue will be dispatched. 
 
4. Key-value store 
 

We have implemented LevelDB-ZNS, an LSM-
tree-based key-value store for ZNS SSD, based on 
LevelDB [7].  LevelDB-ZNS opens a raw block 
device to perform I/O using read/write system calls 
and performs zone management using libzbd [8]. 

LevelDB-ZNS uses a simple user-level file 
system, which supports the minimum operations 
required for LevelDB such as create, append write, 
and delete. It also leverages the fact that SSTable and 
log files are created in almost fixed size, and thus 
allocates one zone for each file. Our ZNS SSD 
prototype provides conventional zones which allows 
random writes and LevelDB-ZNS uses them to store 
log files and file system metadata. 

Figure 2 shows the layout of the LevelDB-ZNS 
file system. Zone 0 is used as a super block to store 
file system information and includes a metadata table 

 
Figure 1. Zone-aware I/O scheduler 
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to store file size, number, and file type. Metadata is 
also maintained in-memory as a hash table so that 
metadata can be quickly referenced without I/Os. 
Whenever a file metadata is changed due to a file 
operation such as create, write, or close, the change 
is recorded in the metadata table. 

For SSTable, a sequential zone is allocated since 
its data is written in units of a fixed-size buffer. For 
log and manifest files, which requires variable-sized 
append, the conventional zone is used. 

When creating an SSTable, LevelDB uses fsync 
before closing the file to make the file persistent. In 
ZNS SSD, the zone must be finished to make zone 
inactive after write. Since our modified Linux kernel 
ensures the writeback of dirty pages when user 
finishes zone, we replaced fsync with zone finish. 

When the SSTable is deleted, the allocated zone is 
reset then inserted into the free list for later reuse. 
We have also used fadvise to invalidate the page 
cache of closed file’s zone to release memory 
resources.  

 
5. Evaluation 
 
5.1. Setup 
 

We have implemented ZNS SSD prototype on the 
Cosmos+ OpenSSD[9] platform.  The ZNS SSD 
prototype supports NVMe ZNS compliant 
commands and provides 32MB sized zones. Besides 
sequential write zones, a few conventional zones are 
also provided for metadata and log files. We also 
used block interface SSDs with page-mapping FTL 
for comparison. 

For the host environment, a PC with an Intel core 
i7-4790 CPU and 16GB of DRAM is used. The 
operating system is Ubuntu 20.04 LTS, with the 
modified Linux kernel based on 5.10. 

We used two versions of LevelDB-ZNS using 
direct and buffered writes. Both versions use 
buffered I/O for reads. For comparison, LevelDB's 
experiment using ext4 file system on block interface 
SSD was also performed. For comparison, the 
LevelDB was used using the ext4 file system on the 
block interface SSD. We evaluated the performance 
using db_bench and YCSB benchmarks [10]. 

 
5.2. Comparison with block interface SSD 
 

In order to evaluate the effect of ZNS, we 
compare the benchmark performance of block 
interface SSD and ZNS SSD. Figure 3 shows the 
results of db_bench fillrandom benchmark with 
100M operations. 

In cased of block SSD, performance is degraded 
as NAND utilization increases due to internal 
garbage collection. ZNS SSD shows constant 
performance regardless of NAND utilization by 
eliminating internal GC. In addition, even when 
NAND utilization is low, LevelDB-ZNS shows 
better performance than the LevelDB due to the 
removal of the file system overhead. 

 
5.3. Comparison of Buffered and Direct I/O 

 
For performance comparison, we use the load and 

workloads A to D of the YCSB benchmark. Both the 
number of KV records and the number of operations 
were set to 10M. 

Figure 4 (a) shows the benchmark performance 
varying the memory limit in Load workload. In case 
of 16GB memory limit, the entire dataset is fit in 
memory. When buffered write is used, throughput 
increases as available memory increases. In the case 
of direct write, the performance did not increase 
much even if more memory was given. 

Figure 4 (b) shows the total amount of read in 
YCSB load and workload A. In the case of buffered 
I/O, if DRAM is sufficient, recently written data is 
read from the page cache and thus save a lot of reads 
from the device. However, in the case of direct write, 
since all data including recently written data must be 
read from the device, the amount of read is amplified 
and SSD bandwidth is wasted. 

Figure 5 shows the throughput of YCSB load and 
workload A to D with 8GB DRAM. The LevelDB 
with buffered write shows 1.5x to 2.38x higher 
performance for all workloads. In the case of load, 
only the SSTable for compaction input is read, so the 
performance difference is the relatively small. The 
performance difference is the smallest in workload C, 

 
Figure 2. Layout of the LevelDB-ZNS filesystem 

 
Figure 3. db_bench benchmark throughput 
varying NAND utilization 
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which is a read-only workload. Workload D shows 
higher performance difference since page cache hit 
rate is high due to the workload characteristic of 
reading recently inserted records. 

 
6. Conclusion 

 
In this paper, we propose a buffered I/O stack for 

ZNS SSD and evaluate its effectiveness with our 
key-value store implementation for ZNS SSD. Our 
evaluation shows that using direct write causes a 
page cache miss for recently written data and thus 
degrades the performance of applications that depend 
on the page cache. We plan to design and optimize 
the user-level file system in key-value store for the 
ZNS SSD as a future work. 
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  (a) YCSB Load – throughput        (b) YCSB A – read I/O 
Figure 4. YCSB benchmark performance 
 

 
Figure 5. YCSB benchmark Throughput 
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