
Buffered I/O support for Zoned Namespace SSD

Youngjae Lee, Jeeyoon Jung, Dongkun Shin
Department of Electrical and Computer Engineering, Sungkyunkwan University

yjlee4154@gmail.com, {wjdwldbs1, dongkun}@skku.edu

Abstract

Recently, NVMe Zoned Namespace (ZNS)

interface has been proposed to reduce the NAND
flash management overheads of solid-state drive by
matching the host interface to internal hardware
characteristics. For the Zoned Namespace SSD,
writes must be performed using direct I/O to ensure
the sequential write order, which may degrade the
performance of user applications in many cases. In
this paper, we introduce buffered write support for
ZNS SSD in Linux kernel I/O stack and implement
LSM-tree-based key-value store for ZNS SSD to
analyze the effect of buffered writes. Our evaluation
shows that buffered writes can reduce the total
amount of I/O and increase overall performance of
applications utilizing ZNS SSD.

Keywords: ZNS, SSD, key-value store

1. Introduction

As flash memory technology has been developed
and prices have decreased, solid state drives (SSDs)
are replacing hard disk drives. SSD is widely
adopted from consumer electronics such as
smartphones and laptops to high-performance data
center servers, due to their advantages such as low
power consumption, high throughput and random
IOPS. However, SSD periodically performs garbage
collection (GC) internally to provide a block
interface, which causes unpredictable performance
and wears out the NAND lifespan [1].

The recently proposed NVMe zoned namespace
(ZNS) interface can alleviate internal GC by
exposing the write characteristics of NAND flash
memory to the host [2]. However, as ZNS provides
only sequential write interface, the existing file
system cannot be used, and a dedicated file system
must be used, or the user application must implement
its own file system.

Filesystems that use out-of-place updates such as
F2FS and Btrfs currently support zoned block

devices [3, 4]. In addition, LSM-tree-based key-
value store is a suitable workload to utilize ZNS SSD
at the application-level by performing update using
only sequential writes [5].

If ZNS SSD is used directly in application-level,
user must use direct I/O to ensure write order [6].
Since data is written to the storage by bypassing the
page cache, even recently written data should be read
from the storage device, and thus degrade I/O
performance in most cases. This can be solved by
implementing a cache at the user-level, but user data
is often not block aligned and implementing a user-
level cache with good performance is complicated.

In this study, we modify the Linux kernel's I/O
stack to support buffered write for ZNS SSD and
implement the LSM-tree-based key-value store to
evaluate the effectiveness of ZNS and buffered I/O.

2. Background

2.1. Zoned Namespace SSD

The NVMe zoned namespace can simplify the
SSD internals and provide predictable performance
by matching the interface to the characteristics of the
NAND flash and eliminates internal GC operations.
Unlike the existing Open-channel SSD that had to
manage all hardware characteristics such as wear-
leveling of NAND in the host, ZNS is more
abstraction and exposes only sequential write
characteristics to the host. Unlike the Open-channel
SSD, ZNS exposes only write and erase
characteristics of NAND flash to the host, and
hardware characteristics such as wear-leveling or
bad-block management are managed by the device,
reducing the burden on the host.

The ZNS interface uses the logical block
addressing as in the block interface, but LBA is
divided into fixed size zones, and writes must be
performed in a sequential order within each zone.
To reuse a zone, user must explicitly reset the zone
to erase the contents and make it writable state.

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 403 -

2.2. LSM-tree

Unlike the existing index data structures such as
B-tree, LSM-tree is a write-optimized data structure
by batching data and writing in a sequential write
pattern. LSM-tree-based key-value store collects a
certain amount of new key-value records in
MemTable, a memory data structure and periodically
flushes to disk in the form of SSTable.

Key-value records are sorted in ascending order
within a single SSTable and organized in several
levels. To search for an arbitrary record, all
SSTables with a key range including the target key
must be searched. LSM-tree periodically performs
compaction in the background to maintain its
structure and optimize read performance. The
background compaction removes obsolete records
and rearranges the records to create new SSTables.

3. Buffered I/O stack for ZNS

Linux buffered I/O uses the page cache to
accelerate storage access, by caching recently
accessed data in DRAM, thus data can be accessed
without incurring storage I/O. When the user calls
the write system call, the Linux kernel copies data to
the page cache and marks it as dirty, and the dirty
pages are written back later in the background.

Since writeback is not guaranteed to be performed
sequentially for each zone, buffered write cannot be
used for ZNS SSDs and direct I/O must be used [6].
However, if direct I/O is used, accessing recently
written data should be performed from the storage,
thus resulting in high latency and waste of the SSD
bandwidth. To solve this problem, we have modified
Linux kernel I/O stack as follows.

Page cache writeback. The writeback of the dirty
pages is performed in sequential order for the LBA
within each zone. Additionally, when the user write
request updates the already written LBA, an error
occurs to prevent overwrite problem.

When making a zone into the finish state, the
dirty page writeback for the zone should precede the
issue of zone finish command. Therefore, when user
finishes zone via ioctl system call, zone finish
command is sent to the device after all dirty pages in
the corresponding zone are written back.

I/O scheduler. While page cache writeback is
performed in sequential order, inversion may still
occur in request insertion order if synchronous writes
from users are performed at the same time. Currently,
Linux deadline I/O scheduler uses per-zone locking
for zoned block devices to serialize writes to ensure
only one ongoing write I/O is exists for each zone [6].
However, the write command can be delivered to the
device in the wrong order as it does not guarantee
command ordering.

Therefore, we added a zone-aware scheduler
to guarantee write order by managing write pointers
in the scheduler. Figure 1 shows the overall
architecture of I/O scheduler. If the target LBA of
the dispatch candidate in the write queue does not
match the offset of the write pointer table of the
current zone, the request is put into a staged request
queue. When the write request is completed,
the write pointer is incremented to point to the next
write offset, and when user resets zone, the write
pointer is initialized to zero.

In the example of Figure 1, the first request of the
write queue has an offset of 4, but the write pointer
of the current zone 3 is 3, so the request is switched
to the stage state. The next request will be dispatched
since its offset matches to the writer pointer, and
after the write pointer is advanced, the requests in the
stage queue will be dispatched.

4. Key-value store

We have implemented LevelDB-ZNS, an LSM-
tree-based key-value store for ZNS SSD, based on
LevelDB [7]. LevelDB-ZNS opens a raw block
device to perform I/O using read/write system calls
and performs zone management using libzbd [8].

LevelDB-ZNS uses a simple user-level file
system, which supports the minimum operations
required for LevelDB such as create, append write,
and delete. It also leverages the fact that SSTable and
log files are created in almost fixed size, and thus
allocates one zone for each file. Our ZNS SSD
prototype provides conventional zones which allows
random writes and LevelDB-ZNS uses them to store
log files and file system metadata.

Figure 2 shows the layout of the LevelDB-ZNS
file system. Zone 0 is used as a super block to store
file system information and includes a metadata table

Figure 1. Zone-aware I/O scheduler

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 404 -

to store file size, number, and file type. Metadata is
also maintained in-memory as a hash table so that
metadata can be quickly referenced without I/Os.
Whenever a file metadata is changed due to a file
operation such as create, write, or close, the change
is recorded in the metadata table.

For SSTable, a sequential zone is allocated since
its data is written in units of a fixed-size buffer. For
log and manifest files, which requires variable-sized
append, the conventional zone is used.

When creating an SSTable, LevelDB uses fsync
before closing the file to make the file persistent. In
ZNS SSD, the zone must be finished to make zone
inactive after write. Since our modified Linux kernel
ensures the writeback of dirty pages when user
finishes zone, we replaced fsync with zone finish.

When the SSTable is deleted, the allocated zone is
reset then inserted into the free list for later reuse.
We have also used fadvise to invalidate the page
cache of closed file’s zone to release memory
resources.

5. Evaluation

5.1. Setup

We have implemented ZNS SSD prototype on the
Cosmos+ OpenSSD[9] platform. The ZNS SSD
prototype supports NVMe ZNS compliant
commands and provides 32MB sized zones. Besides
sequential write zones, a few conventional zones are
also provided for metadata and log files. We also
used block interface SSDs with page-mapping FTL
for comparison.

For the host environment, a PC with an Intel core
i7-4790 CPU and 16GB of DRAM is used. The
operating system is Ubuntu 20.04 LTS, with the
modified Linux kernel based on 5.10.

We used two versions of LevelDB-ZNS using
direct and buffered writes. Both versions use
buffered I/O for reads. For comparison, LevelDB's
experiment using ext4 file system on block interface
SSD was also performed. For comparison, the
LevelDB was used using the ext4 file system on the
block interface SSD. We evaluated the performance
using db_bench and YCSB benchmarks [10].

5.2. Comparison with block interface SSD

In order to evaluate the effect of ZNS, we
compare the benchmark performance of block
interface SSD and ZNS SSD. Figure 3 shows the
results of db_bench fillrandom benchmark with
100M operations.

In cased of block SSD, performance is degraded
as NAND utilization increases due to internal
garbage collection. ZNS SSD shows constant
performance regardless of NAND utilization by
eliminating internal GC. In addition, even when
NAND utilization is low, LevelDB-ZNS shows
better performance than the LevelDB due to the
removal of the file system overhead.

5.3. Comparison of Buffered and Direct I/O

For performance comparison, we use the load and

workloads A to D of the YCSB benchmark. Both the
number of KV records and the number of operations
were set to 10M.

Figure 4 (a) shows the benchmark performance
varying the memory limit in Load workload. In case
of 16GB memory limit, the entire dataset is fit in
memory. When buffered write is used, throughput
increases as available memory increases. In the case
of direct write, the performance did not increase
much even if more memory was given.

Figure 4 (b) shows the total amount of read in
YCSB load and workload A. In the case of buffered
I/O, if DRAM is sufficient, recently written data is
read from the page cache and thus save a lot of reads
from the device. However, in the case of direct write,
since all data including recently written data must be
read from the device, the amount of read is amplified
and SSD bandwidth is wasted.

Figure 5 shows the throughput of YCSB load and
workload A to D with 8GB DRAM. The LevelDB
with buffered write shows 1.5x to 2.38x higher
performance for all workloads. In the case of load,
only the SSTable for compaction input is read, so the
performance difference is the relatively small. The
performance difference is the smallest in workload C,

Figure 2. Layout of the LevelDB-ZNS filesystem

Figure 3. db_bench benchmark throughput
varying NAND utilization

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 405 -

which is a read-only workload. Workload D shows
higher performance difference since page cache hit
rate is high due to the workload characteristic of
reading recently inserted records.

6. Conclusion

In this paper, we propose a buffered I/O stack for

ZNS SSD and evaluate its effectiveness with our
key-value store implementation for ZNS SSD. Our
evaluation shows that using direct write causes a
page cache miss for recently written data and thus
degrades the performance of applications that depend
on the page cache. We plan to design and optimize
the user-level file system in key-value store for the
ZNS SSD as a future work.

Acknowledgement

This work was supported by Institute of Information
& communications Technology Planning &
Evaluation(IITP) grant funded by the Korea
government(MSIT) (No.IITP-2017-0-00914,
Software Framework for Intelligent IoT Devices)

References

[1] Kim, Jaeho, et al. “Alleviating garbage collection
interference through spatial separation in all flash arrays.”
In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019.

[2] Bjørling, Matias, et al. "ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs." Proceedings of the
2021 USENIX Annual Technical Conference (USENIX
ATC’21). 2021.

[3] Changman Lee, et al. “F2FS: A new file system for
flash storage.” In 13th USENIX Conference on File and
Storage Technologies (FAST’15), 2015.

[4] Ohad Rodeh, et al. “BTRFS: The linux B-tree
filesystem.” ACM Transactions on Storage, 2013.

[5] Patrick O’Neil, et all. “The log-structured merge-tree
(LSM-tree).” Acta Informatica. 1996.

[6] Zoned Namespaces (ZNS) SSDs. https://
zonedstorage.io/introduction/zns/.

[7] Sanjay Ghemawat and Jeff Dean. LevelDB.
http://code.google.com/p/leveldb, 2011.

[8] libzbd User Library. https://zonedstorage.io/
projects/libzbd/

[9] Jaewook Kwak, et al. "Cosmos+ OpenSSD: Rapid
prototype for flash storage systems." ACM Transactions on
Storage (TOS) 16, 2020.

[10] Brian F Cooper, et al. “Benchmarking Cloud Serving
Systems with YCSB.” In Proceedings of the 1st ACM
Symposium on Cloud Computing, 2010.

 (a) YCSB Load – throughput (b) YCSB A – read I/O
Figure 4. YCSB benchmark performance

Figure 5. YCSB benchmark Throughput

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 406 -

