
LSM-tree Compaction Acceleration Using In-storage Processing

Minje Lim, Jeeyoon Jung, Dongkun Shin
Department of Electrical and Computer Engineering,

Sungkyunkwan University, Suwon, Korea
scvhero9607@gmail.com, jiyun710@gmail.com, dongkun@skku.edu

Abstract

Log structured merge tree (LSM-tree) is widely
used to implement key-value stores. To maintain the
structure of the LSM-tree, it is necessary to perform
compaction to remove duplicated entries. Compaction
can delay the user's write operation and affects perfor-
mance. If In-storage processing is applied to compac-
tion, data traffic between Host-Storage can be reduced
and tasks can be processed quickly to improve system
performance. If compaction is efficiently processed
by applying in-storage processing, overall DB perfor-
mance can be improved. In this paper, we designed an
IP that can accelerate the compaction and integrated it
into the Cosmos+ OpenSSD.
Keywords: LSM-Tree, Key-Value Store, Compac-
tion, FPGA, OpenSSD, In-storage processing

1. Introduction

Log-structured Merge Tree (LSM-tree) [1] based
key-value store is widely used to replace existing
RDBMS in fields such as Big Data Processing and
there are examples such as LevelDB [2], Cassandra
[3], and RocksDB [4]. Records inserted by the user
are stored in the memtable, an in-memroy structure,
and when the size of the memtable reaches a threshold,
the memtable flush operation is performed to convert
the memtable to an SSTable and store it in storage.
SSTable is managed in several levels, and compaction
is performed to create a new SSTable by merging ex-
isting SSTables to remove duplicate records between
SSTables. Compaction may delay the user's put oper-
ation, which is a major cause of write performance
degradation. In-storage processing is a technique that
uses the CPU or FPGA inside the storage device to
process the host's work instead. In-storage processing
can improve application performance by reducing
data traffic and increasing processing speed. In this
paper, the following work was performed to solve the
write delay problem due to compaction.
 We Designed and implemented IP that can
accelerate the Compaction of LSM-Tree
 Integrate Compaction IP into Cosmos+
OpenSSD[5] and LevelDB to offload compaction.
 Increased compaction performance by up to
63% and end-to-end performance by up to 65%

2. Background

2.1 LSM-tree SSTable and compaction

SSTable is a format used to save records as files in
storage in LSM-tree. It consists of a data block in
which actual records are recorded, an index block in
which the size of each data block and location infor-
mation in the file are recorded, and a footer containing
metadata information. When an SSTable in DRAM is
written to level 0 of storage through memtable flush,
records with duplicate keys may occur between the
newly written SSTable and the existing SSTable. As
the number of SSTables with overlapping key ranges
increases, the number of SSTables that need to be
checked to find a specific key increases, and compac-
tion must be performed to solve this problem. Com-
paction is performed when the number of SSTables
existing in level i reaches a threshold value, and by
merging SSTables with overlapping key ranges exist-
ing in level i and level i+1, a new SSTable is recorded
in level i+1.
2.2 In-Storage processing

Biscuit [6] proposed a framework for ISP develop-
ment so that data processing applications are per-
formed in the form of distributed processing in the
host and SSD. YourSQL [7] applies Biscuit to the
SQL database to offload query processing to the SSD
and performs filtering using dedicated hardware. Cat-
alina [8] used a Computational Storage Device (CSD)
equipped with a high-performance ARM CPU to
show the effectiveness of ISP's distributed processing
workload.
2.2 LSM-tree offloading

Teng Zhang et al. offloaded the scan operation of
LSM-Tree based KV store to computational stor-
age.[9] A separate header is added to the data block.
A header is added to each data block to remove IP
metadata access. On the other hand, we used original
LevelDB SSTable format.

Wei Cao et al. and X. Sun et al. offloaded the LSM-
tree compaction to the FPGA PCIe accelerator. [10,11]
To offload compaction using an external accelerator,
additional host DRAM copy is required between the
storage and the accelerator, but we integrated the
FPGA accelerator and storage to remove the addi-
tional host copy overhead.

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 40 -

3. Design
3.1 IP Design

Due to the characteristic of level 0 where key
ranges in SSTables can overlap, Level 0 - Level 1
compaction offloading requires multiple SSTable de-
coders for simultaneous comparison of Level 0 SSTa-
bles. While this causes an increase in FPGA resource
and memory usage, level 0 SSTables have a high
probability of remaining in the host page cach, so
there is relatively little benefit from offloading. So we
designed an IP capable of offloading level 1 – level 2
and higher compaction that requires only two decod-
ers.

Fig. 1. Overall In-storage processing system archi-
tecture including compaction IP

Compaction IP consists of decoder, comparator,

and encoder. The decoder converts the SSTable into a
key-value stream format, the comparator compares
the keys and transmits the smaller key-value pair first,
and the encoder converts the key-value stream into the
SSTable. Each component is connected through the
AXI4-Stream interface and designed to operate asyn-
chronously with each other, and the bus width con-
necting Compaction IP and DRAM was set to 64bit,
the maximum value provided by the ARM core of
Cosmos+.

Decoder is composed of SSTable Index decoder,
data decoder, and Input/Output queue. Index decoders
extract information necessary to process data blocks
by parsing internal metadata. The data decoder con-
verts the data block into a key-value stream and sends
it to the comparator. When SSTable is loaded from
NAND to DRAM, the address of the DRAM buffer
and the length of the SSTable are enqueued in the in-
put queue, and the decoder sequentially processes the
SSTables inserted into the input queue. When SSTa-
ble decoding is finished, the buffer address is
enqueued in the output queue so that the buffer can be
reused. The data decoder issues a burst transaction us-
ing DMA engine for efficient transmission because it
accesses DRAM buffer sequentially, but the index de-
coder directly issues a transaction in units of bytes be-
cause it accesses DRAM randomly. Since the index
decoder and data decoder operate asynchronously, the
time it takes to parse metadata overlaps with data-
block parsing.

Fig. 2. Decoder structure

Comparator compares the keys received from each

decoder to select a smaller key, and if the key is a non-
overlapping key, the comparator delivers the record to
the encoder.

Encoder converts the record received from Com-
parator into SSTable and writes the result to DRAM.
SST Encoder receives information from data encoder,
writes metadata and temporarily stores it in BRAM.
When the size of SSTable exceeds a threshold and
files need to be separated, the metadata stored in
BRAM is flushed to DRAM and the length of the cre-
ated SSTable After enqueue to the result queue, it
starts writing a new SSTable.

Fig. 3. Comparator, Encoder structure

3.2 SW Design
We modified LevelDB to save the SSTable in the

continuous logical address without a file system.
When compaction is offloaded, the LBA and size

of the target SSTable is transmitted to the SSD by
NVMe IO command. Compaction IP is controlled by
FTL (Flash Translation Layer) of firmware, and per-
forms NAND-DRAM data transfer, Compaction IP
monitoring, and result metadata management.

4. Experiment

Host PC is i7 4790 CPU, 12GB DRAM. Cosmos+
uses 4ch 4way setup, and Compaction IP operates at
200Mhz. Table 1 shows the FPGA resource utilizatio
n consumed by Compaction IP. For the experiment, t
he fillrandom workload of db_bench was used, and th
e size of the SSTable was set to 32MB and the numb
er of records was set to 100 million.

Table 1: Resource Utilization

 LUT FF BRAM
Decoder 6484 x 2 2390 x 2 0
Comparator 1010 583 0
Encoder 32192 11212 49
etc 6199 1725 5
Total (%) 21.0 3.6 9.9

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 41 -

4.1 Compaction Throughput
Table 2 shows the difference between compaction

in the host CPU and offloading in the SSD. When the
host processes compaction, the throughput is constant,
but when offloading, the performance slightly in-
creases as the value size increases.

Table 2: Compaction Throughput

Value size 128 256 512 1024
Host-only 106.7 106.3 106.0 106.3
Offloading 159.7 171.4 172.7 175.5

4.1 End-to-end Performance

Figure n shows the difference in compaction per-
formance according to the value size. As the size of
the value increases, the effect of compaction increases
due to the increase in the size of the entire data set.
Also, due to parallel execution of compaction and
memtable flush, higher performance improvement
than pure compaction performance improvement was
obtained.

Fig. 4. End-to-end performance with different value
size

5. Conclusion

In this paper, we designed and implemented FPGA
IP that can accelerate the compaction of LSM-Tree,
and implemented In-storage processing system
through integration with Comsos+ OpenSSD platform.
Compared to the host-only version, the compaction
performance is improved by up to 64% and the end-
to-end performance by up to 65%.

Acknowledgment

This work was supported by Institute of Infor-
mation & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.IITP-2017-0-00914, Software
Framework for Intelligent IoT Devices)

References

[1] P. O’Neil et al, “The log-structured merge-tree
(LSM-tree)”. Acta Informatica, 33(4):351–385, 1996.
[2] Google, LevelDB,
https://github.com/google/leveldb
[3] Apache, Cassandra, cassandra.apache.org
[4] Facebook, RocksDB, https://github.com/facebook
/rocksdb
[5] Y. H. Song et al., “Cosmos+ openssd: A nvme-ba
sed open source ssd platform,” Flash Memory Summ
it, 2016.
[6] B. Gu et al., “Biscuit: a framework for near-data p
rocessing of big data workloads”, Proceedings of the
International Symposium on Computer Architecture,
2016.
[7] I. Jo et al., “YourSQL: a high-performance databa
se system leveraging in-storage computing”, Proceed
ings of the VLDB Endowment, 2016.
[8] M. Torabzadehkashi, et al., “Computational stora
ge: an efficient and scalable platform for big data and
 hpc applications,” Journal of Big Data, 2019.
[9] Wei Cao et al, “POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in
Cloud-Native Relational Database”, In: 18th USENI
X Conference on File and Storage Technologies (FA
ST20). 2020, pp. 29-41
[10] Teng Zhang et al, “FPGA-Accelerated Compacti
ons for LSM-based Key-Value Store”, In: 18th USE
NIX Conference on File and Storage Technologies (F
AST20). 2020, pp. 225-237
[11] X. Sun et al, “FPGA-based Compaction Engine
for Accelerating LSM-tree Key-Value Stores”, In: 20
20 IEE 36th International Conference on Data Engine
ering (ICDE). 2020, pp. 1261-1272

0

5

10

15

20

128 256 512 1024T
hr

ou
gh

pu
t (

M
B

/s
)

Value size
host-only offloading

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 42 -

