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Abstract 
 

Log structured merge tree (LSM-tree) is widely 
used to implement key-value stores. To maintain the 
structure of the LSM-tree, it is necessary to perform 
compaction to remove duplicated entries. Compaction 
can delay the user's write operation and affects perfor-
mance. If In-storage processing is applied to compac-
tion, data traffic between Host-Storage can be reduced 
and tasks can be processed quickly to improve system 
performance. If compaction is efficiently processed 
by applying in-storage processing, overall DB perfor-
mance can be improved. In this paper, we designed an 
IP that can accelerate the compaction and integrated it 
into the Cosmos+ OpenSSD. 
Keywords: LSM-Tree, Key-Value Store, Compac-
tion, FPGA, OpenSSD, In-storage processing 
 
1. Introduction 
 

Log-structured Merge Tree (LSM-tree) [1] based 
key-value store is widely used to replace existing 
RDBMS in fields such as Big Data Processing and 
there are examples such as LevelDB [2], Cassandra 
[3], and RocksDB [4]. Records inserted by the user 
are stored in the memtable, an in-memroy structure, 
and when the size of the memtable reaches a threshold, 
the memtable flush operation is performed to convert 
the memtable to an SSTable and store it in storage. 
SSTable is managed in several levels, and compaction 
is performed to create a new SSTable by merging ex-
isting SSTables to remove duplicate records between 
SSTables. Compaction may delay the user's put oper-
ation, which is a major cause of write performance 
degradation. In-storage processing is a technique that 
uses the CPU or FPGA inside the storage device to 
process the host's work instead. In-storage processing 
can improve application performance by reducing 
data traffic and increasing processing speed. In this 
paper, the following work was performed to solve the 
write delay problem due to compaction. 
 We Designed and implemented IP that can 
accelerate the Compaction of LSM-Tree  
 Integrate Compaction IP into Cosmos+ 
OpenSSD[5] and LevelDB to offload compaction. 
 Increased compaction performance by up to 
63% and end-to-end performance by up to 65% 

 

2. Background  
 
2.1 LSM-tree SSTable and compaction 

SSTable is a format used to save records as files in 
storage in LSM-tree. It consists of a data block in 
which actual records are recorded, an index block in 
which the size of each data block and location infor-
mation in the file are recorded, and a footer containing 
metadata information. When an SSTable in DRAM is 
written to level 0 of storage through memtable flush, 
records with duplicate keys may occur between the 
newly written SSTable and the existing SSTable. As 
the number of SSTables with overlapping key ranges 
increases, the number of SSTables that need to be 
checked to find a specific key increases, and compac-
tion must be performed to solve this problem. Com-
paction is performed when the number of SSTables 
existing in level i reaches a threshold value, and by 
merging SSTables with overlapping key ranges exist-
ing in level i and level i+1, a new SSTable is recorded 
in level i+1. 
2.2 In-Storage processing 

Biscuit [6] proposed a framework for ISP develop-
ment so that data processing applications are per-
formed in the form of distributed processing in the 
host and SSD. YourSQL [7] applies Biscuit to the 
SQL database to offload query processing to the SSD 
and performs filtering using dedicated hardware. Cat-
alina [8] used a Computational Storage Device (CSD) 
equipped with a high-performance ARM CPU to 
show the effectiveness of ISP's distributed processing 
workload. 
2.2 LSM-tree offloading 

Teng Zhang et al. offloaded the scan operation of 
LSM-Tree based KV store to computational stor-
age.[9] A separate header is added to the data block. 
A header is added to each data block to remove IP 
metadata access. On the other hand, we used original 
LevelDB SSTable format.  

Wei Cao et al. and X. Sun et al. offloaded the LSM-
tree compaction to the FPGA PCIe accelerator. [10,11] 
To offload compaction using an external accelerator, 
additional host DRAM copy is required between the 
storage and the accelerator, but we integrated the 
FPGA accelerator and storage to remove the addi-
tional host copy overhead. 
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3. Design  
3.1 IP Design 

Due to the characteristic of level 0 where key 
ranges in SSTables can overlap, Level 0 - Level 1 
compaction offloading requires multiple SSTable de-
coders for simultaneous comparison of Level 0 SSTa-
bles. While this causes an increase in FPGA resource 
and memory usage, level 0 SSTables have a high 
probability of remaining in the host page cach, so 
there is relatively little benefit from offloading.  So we 
designed an IP capable of offloading level 1 – level 2 
and higher compaction that requires only two decod-
ers. 

 
Fig. 1. Overall In-storage processing system archi-
tecture including compaction IP 

 
Compaction IP consists of decoder, comparator, 

and encoder. The decoder converts the SSTable into a 
key-value stream format, the comparator compares 
the keys and transmits the smaller key-value pair first, 
and the encoder converts the key-value stream into the 
SSTable. Each component is connected through the 
AXI4-Stream interface and designed to operate asyn-
chronously with each other, and the bus width con-
necting Compaction IP and DRAM was set to 64bit, 
the maximum value provided by the ARM core of 
Cosmos+. 

Decoder is composed of SSTable Index decoder, 
data decoder, and Input/Output queue. Index decoders 
extract information necessary to process data blocks 
by parsing internal metadata. The data decoder con-
verts the data block into a key-value stream and sends 
it to the comparator. When SSTable is loaded from 
NAND to DRAM, the address of the DRAM buffer 
and the length of the SSTable are enqueued in the in-
put queue, and the decoder sequentially processes the 
SSTables inserted into the input queue. When SSTa-
ble decoding is finished, the buffer address is 
enqueued in the output queue so that the buffer can be 
reused. The data decoder issues a burst transaction us-
ing DMA engine for efficient transmission because it 
accesses DRAM buffer sequentially, but the index de-
coder directly issues a transaction in units of bytes be-
cause it accesses DRAM randomly. Since the index 
decoder and data decoder operate asynchronously, the 
time it takes to parse metadata overlaps with data-
block parsing. 

 
Fig. 2. Decoder structure 

 
Comparator compares the keys received from each 

decoder to select a smaller key, and if the key is a non-
overlapping key, the comparator delivers the record to 
the encoder.  

Encoder converts the record received from Com-
parator into SSTable and writes the result to DRAM. 
SST Encoder receives information from data encoder, 
writes metadata and temporarily stores it in BRAM. 
When the size of SSTable exceeds a threshold and 
files need to be separated, the metadata stored in 
BRAM is flushed to DRAM and the length of the cre-
ated SSTable After enqueue to the result queue, it 
starts writing a new SSTable. 

 
Fig. 3. Comparator, Encoder structure 

3.2 SW Design 
We modified LevelDB to save the SSTable in the 

continuous logical address without a file system.  
When compaction is offloaded, the LBA and size 

of the target SSTable is transmitted to the SSD by 
NVMe IO command. Compaction IP is controlled by 
FTL (Flash Translation Layer) of firmware, and per-
forms NAND-DRAM data transfer, Compaction IP 
monitoring, and result metadata management. 
 
4. Experiment 
 

Host PC is i7 4790 CPU, 12GB DRAM. Cosmos+ 
uses 4ch 4way setup, and Compaction IP operates at 
200Mhz. Table 1 shows the FPGA resource utilizatio
n consumed by Compaction IP. For the experiment, t
he fillrandom workload of db_bench was used, and th
e size of the SSTable was set to 32MB and the numb
er of records was set to 100 million. 

 
Table 1: Resource Utilization 

 LUT FF BRAM 
Decoder 6484 x 2 2390 x 2 0 
Comparator 1010 583 0 
Encoder 32192 11212 49 
etc 6199 1725 5 
Total (%) 21.0 3.6 9.9 
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4.1 Compaction Throughput 
Table 2 shows the difference between compaction 

in the host CPU and offloading in the SSD. When the 
host processes compaction, the throughput is constant, 
but when offloading, the performance slightly in-
creases as the value size increases. 
 

Table 2: Compaction Throughput 

Value size 128 256 512 1024 
Host-only 106.7 106.3 106.0 106.3 
Offloading 159.7 171.4 172.7 175.5 

 
4.1 End-to-end Performance 
 

Figure n shows the difference in compaction per-
formance according to the value size. As the size of 
the value increases, the effect of compaction increases 
due to the increase in the size of the entire data set. 
Also, due to parallel execution of compaction and 
memtable flush, higher performance improvement 
than pure compaction performance improvement was 
obtained. 

 

 
 

Fig. 4. End-to-end performance with different value 
size 
 
5. Conclusion 

In this paper, we designed and implemented FPGA 
IP that can accelerate the compaction of LSM-Tree, 
and implemented In-storage processing system 
through integration with Comsos+ OpenSSD platform. 
Compared to the host-only version, the compaction 
performance is improved by up to 64% and the end-
to-end performance by up to 65%. 
 
Acknowledgment 

This work was supported by Institute of Infor-
mation & communications Technology Planning & 
Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.IITP-2017-0-00914, Software 
Framework for Intelligent IoT Devices) 

 
 
 

References 
 
[1] P. O’Neil et al, “The log-structured merge-tree 
(LSM-tree)”. Acta Informatica, 33(4):351–385, 1996. 
[2] Google, LevelDB, 
https://github.com/google/leveldb 
[3] Apache, Cassandra, cassandra.apache.org 
[4] Facebook, RocksDB, https://github.com/facebook
/rocksdb 
[5] Y. H. Song et al., “Cosmos+ openssd: A nvme-ba
sed open source ssd platform,” Flash Memory Summ
it, 2016. 
[6] B. Gu et al., “Biscuit: a framework for near-data p
rocessing of big data workloads”, Proceedings of the 
International Symposium on Computer Architecture, 
2016. 
[7] I. Jo et al., “YourSQL: a high-performance databa
se system leveraging in-storage computing”, Proceed
ings of the VLDB Endowment, 2016.  
[8] M. Torabzadehkashi, et al., “Computational stora
ge: an efficient and scalable platform for big data and
 hpc applications,” Journal of Big Data, 2019. 
[9] Wei Cao et al, “POLARDB Meets Computational 
Storage: Efficiently Support Analytical Workloads in 
Cloud-Native Relational Database”, In: 18th USENI
X Conference on File and Storage Technologies (FA
ST20). 2020, pp. 29-41 
[10] Teng Zhang et al, “FPGA-Accelerated Compacti
ons for LSM-based Key-Value Store”, In: 18th USE
NIX Conference on File and Storage Technologies (F
AST20). 2020, pp. 225-237 
[11] X. Sun et al, “FPGA-based Compaction Engine 
for Accelerating LSM-tree Key-Value Stores”, In: 20
20 IEE 36th International Conference on Data Engine
ering (ICDE). 2020, pp. 1261-1272 
 

0

5

10

15

20

128 256 512 1024T
hr

ou
gh

pu
t (

M
B

/s
)

Value size
host-only offloading

The Sixth International Conference on Consumer Electronics (ICCE) Asia 2021

- 42 -


