a2 United States Patent

Shin et al.

US011650918B2

ao) Patent No.: US 11,650,918 B2
45) Date of Patent: May 16, 2023

(54) METHOD AND APPARATUS FOR
COMPRESSING ADDRESSES

(71) Applicant: RESEARCH & BUSINESS
FOUNDATION SUNGKYUNKWAN
UNIVERSITY, Suwon-si (KR)

(72) Inventors: Dong Kun Shin, Seoul (KR); Gyeong
Hwan Hong, Yongin-si (KR)

(73) Assignee: Research & Business Foundation
Sungkyunkwan University, Suwon-si
(KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/528,664

(22) Filed: Nov. 17, 2021

(65) Prior Publication Data
US 2022/0156186 Al May 19, 2022

(30) Foreign Application Priority Data
Nov. 17,2020 (KR) .coevrievrreerneee 10-2020-0154112
(51) Imt.CL
GO6F 12/00 (2006.01)
GO6F 12/0802 (2016.01)
(52) US. CL
CPC ... GOG6F 12/0802 (2013.01); GO6F 2212/608
(2013.01)

(58) Field of Classification Search
CPC ..ccvvvvrerinenn GOG6F 12/0802; GO6F 2212/608
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0084261 Al 4/2012 Parab
2017/0255388 Al* 9/2017 Sharma ... GOGF 12/10
2018/0052631 Al 2/2018 Kalyanasundharam et al.

FOREIGN PATENT DOCUMENTS

KR 10-2019-0032527 A 3/2019

OTHER PUBLICATIONS

Park, Funsoo “Heap Memory Allocation Technique of Lightweight
JavaScript Engine for the IoT Devices” Master’s Thesis, Depart-
ment of IT Convergence, The Graduate School Sungkyunkwan
University, Oct. 2016, (42 pages in English).

Korean Office Action dated Jul. 18, 2022, in counterpart Korean
Patent Application No. 10-2020-0154112 (5 pages in Korean).

* cited by examiner

Primary Examiner — Gurtej Bansal
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

A method of compressing an address includes receiving an
input of a full address including a first part and a second part;
checking a segment base address based on the first part in a
previously stored reverse map cache (RMC); obtaining a
block offset based on the segment base address and the
second part; and outputting a compressed address by com-
pressing the first part and the second part, respectively, based
on the segment base address and the block offset.

11 Claims, 12 Drawing Sheets

wm JavaScript object

wie: Targes SavaSoript objecs

SRAM Space

Single f;‘fas'cnp t
fiesp-base E:Exgme
addresses Liode
RYOS

JavaScript beap
LLOCATED 1IN PHYSICALLY
CONTIGUOUS SPACE

U.S. Patent May 16, 2023 Sheet 1 of 12 US 11,650,918 B2

FIG. 1A

s JavaScript objeat

s Target JavaSeript object

SRAM Space

: Javakeript heap
“ALLOCATED IN PHYSICALLY
CONTIGUOUS SPACE

offset

—

Single | AvaScript
heap-base ?é‘ifém
adidresses i

RTOS

U.S. Patent May 16, 2023 Sheet 2 of 12

FIG. 1B

SRAM Space

i JavaSeript beap
s ALLOCATED AFTER
Library 2 SPLITTING INTO
MULTIPLE

offsct

Library 1

Library 0

Maltiple 33_‘;&5?rzp§
segent | CUEOC
“hise Code

addresses | RTOS

US 11,650,918 B2

U.S. Patent May 16, 2023 Sheet 3 of 12 US 11,650,918 B2

[FIG. 2]
e e " < 100
Dynamic Segment Allecator (DSA) —— _
* & ¢) SRAM
f Segment Header Table Space
110
Multi-base Compressed Address Translator
/ (MBCAT) | fput
130 ; Address Decompression AcCess
b e , yi| Object
/ + | Segment Base Table - Full-bitwidih Address 13
132 Address Compression

orae Moan Cache s L Input
Rew*i:;i‘gf‘"ﬁw Full-bitwidth Address }“
v (| Store
i| Pointer
Reverse Map Tree ’
! e

150

U.S. Patent May 16, 2023 Sheet 4 of 12 US 11,650,918 B2

UNIT T 220

[FIG. 3]

200
2 """""""""""""" -
{ |
{ i
{ |
{ }
3 l

210/\§¢ INPUT UNIT CONTROL L | o3

i UNIT |
{ i
H {
{ |
H i
: !
| STORAGE | !
{
{
{

U.S. Patent May 16, 2023 Sheet 5 of 12

[FIG. 4]

{(START)

Y

RECEIVE INPUT OF FULL ADDRESS
INCLUDING FIRST PART
AND SECOND PART

US 11,650,918 B2

—~——-S110

¥

CHECK SEGMENT BASE ADDRESS BASED
ON RMC

- 5120

¥

OBTAIN BLOCK OFFSET BASED
ON SEGMENT BASE ADDRESS
AND SECOND PART

5130

¥

CONVERT FULL ADDRESS INT0
COMPRESSION ADDRESS BASED ON SEGMENT
BASE ADDRESS AND BLOCK OFFSET

- 5140

END

U.S. Patent

May 16, 2023

Sheet 6 of 12

[FIG. 5]

US 11,650,918 B2

fepred: Fudl-bibwidth Address (32bi6) \§
{OMU2760)
$O00 0004 0000 DOTH 0010 BT 80M0 0000 J,

¢ Modalar by 4 (RMC size)
~

rmeeneentensanes

i Index

P

Mot

Reverse Map Entry

Segment-Base

SEGMENT IDENTIFICATION
Reverse Map Cache
{RMC)
Segment-Base |
BRdeX |\ ddress (SBA) |
(01 | isdothaeent ({3
} GAIN0Z8A00 i
2 oxoomziase | 2) Achehi
3 B2 1000 4
Cache miss
£l
Reverse Map Tree
SBA S

OxG0021C00 | 4

SBA Sy

Ox0020A0G |

Address (8BA} |
DOON22600]

Subtract

Full-bitwidih
Blogk {fiset
{{BH300160}

_ ... 0PBT 0006 thoo

,,,,,,,,,,,,,) /
Low-bivwidth
block offset

SBA W SBA S

OxO00Z0000 | 0

OxG0021200 | 2

US 11,650,918 B2

May 16, 2023 Sheet 7 of 12

IG. 6]

Lol
|2

U.S. Patent

~VSA + VD

& B

-YSA T VI ON miw E
LNHS sy & T T
~VSA + VD 3
. . o &
~VSU+VION 2 8

-HHS VD

~VSA+VD
VS + VI ON
~dHS + VD

sypart
-web

Real World Apps.

~Cam

e YSAAVO
~YR0 + VI ON
~dHS + VD

ray~
wrace

“YEA+ VD
[lvsa+vOooN
. -MHS + V0

delta
-blue

VST + VO
VS + VD ON
-UHS VD

Crypto

LYSA+YD
VS VD ON &
MHS VD

format
-xparb

JavaScript Engines / Workload Name

~VSU+ VD
-VSA+ VI ON
~HS VD

crypto
-shal

SunSpider

Data Block Area (Full-bitwidth Overhead)

Free Block Area

Others

~YSU + V0D
~VSU + VI ON
-dHS + VD

[1 Data Block Area (Others)

NS Segment Metadata Area

aCCess-
binary-
trees

REAC

(530 °71§ AJoumy Xasi) a8raoay

U.S. Patent May 16, 2023 Sheet 8 of 12 US 11,650,918 B2

[FIG. 7A]
1.0-
0.8~
2 i
=
0.6~
3:-: i e
Q 04+ * access-bi
=] #- access-bmary-trees
m - crypto-sha]
0.2+ :
| -~ (ate-format-xparb
0.0 1 i i i J
3 4 8 16 32
RMC Size

Reverse map cache hit ratio

U.S. Patent

n
—
(]

Average RMC Miss Penalty (Cycles)

May 16, 2023 Sheet 9 of 12 US 11,650,918 B2
. 7B]
280~ ~e- access-binary-trees

ol Cryp to.. Sha_ }

RMC Size
Reverse map cache miss penalty

U.S. Patent May 16, 2023 Sheet 10 of 12 US 11,650,918 B2

FI1G. 8A

AL LS

Ay erag
o
ol js-Def4

RMO (16000

£
10T SMBCA

Compressed Addressing
Options (RMC Size)

access-binary-trees

U.S. Patent

May 16, 2023

150

Sheet 11 of 12

F1G. 8B

fo T is-Dief %

=

oTis-8MBCA

Compressed Addressing
Options (RMO Size)

eryplo-shal

US 11,650,918 B2

U.S. Patent May 16, 2023 Sheet 12 of 12 US 11,650,918 B2

FI1G. 8C

Average Compression Cycles

12
> 2
foT i5-Def~ |

10T js-SMBCA

Compressed Addressing
Options (RMC Size)

date-format-xparb

US 11,650,918 B2

1
METHOD AND APPARATUS FOR
COMPRESSING ADDRESSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the priority of Korean Patent
Application No. 10-2020-0154112 filed on Nov. 17, 2020, in
the Korean Intellectual Property Office, the disclosure of
which is incorporated herein by reference.

BACKGROUND

Field

The present disclosure relates to a method and apparatus
for compressing addresses, and more particularly to, a
method and apparatus for compressing addresses for mini-
mizing memory access in an address compression operation
when using compressed addressing (CA) and dynamic seg-
ment allocation (DSA) in the JavaScript engine.

Description of the Related Art

The JavaScript engine dynamically allocates unused
memory at runtime, releases unused memory through gar-
bage collection, and an area to which memory is allocated by
the JavaScript engine is called a memory heap.

FIG. 1A is a diagram illustrating a memory area in a static
memory allocation method of a JavaScript engine, and FIG.
1B is a diagram illustrating a memory area in a dynamic
memory allocation method of the JavaScript engine.

Referring to FIG. 1A, it can be seen that the size of the
entire memory heap is fixed in the static memory allocation
method. Accordingly, there is a problem in that it is difficult
to simultaneously allocate a memory space for a lightweight
JavaScript engine and an external library on an on-chip
memory. Therefore, there is a problem in that no memory
space is allocated to external libraries in which a JavaScript-
based application program performs DNN-based machine
learning or IoT standard communication in an MCU (see
Non-Patent Document 1).

In order to solve this problem, dynamic memory alloca-
tion of the JavaScript engine has been proposed. The
dynamic memory allocation methods are divided into a
dynamic object allocation method and a dynamic segment
allocation method. The dynamic object allocation method is
a method of allocating memory using a system memory
allocator every time an object is allocated, but is not used in
most cases because of memory waste due to metadata (a
memory area address and size) for the memory area man-
aged by the system memory allocator. For this reason, the
dynamic segment allocation method is used.

Referring to FIG. 1B, the dynamic segment allocation
method allocates memory using a memory allocator of the
JavaScript engine every time a segment is created. In the
dynamic memory allocation method, because the memory
space is allocated from the system memory allocator in a
unit of segment and the corresponding space is allocated to
an object, user memory size increases in proportion to the
number of objects so that space which may be allocated to
external libraries is provided. In addition, in the dynamic
segment allocation method, the memory waste due to meta-
data managed by the system memory allocator is reduced
(see Non-Patent Document 2).

However, when the dynamic segment allocation method
and CA are used together, there is a problem in that latency

10

15

25

30

40

45

55

65

2

greatly increases because the memory access increases in the
address compression operation.

PRIOR ART DOCUMENT
Non-Patent Documents

(Non-Patent Document 0001) “SunSpider JavaScript
Benchmark.” [Online]. Available: https://webkit.org/pert/
sunspider/sunspider.html

(Non-Patent Document 0002) Eunsoo Park, Hyemin Lee,
and Donggun Shin, “A Study on Optimizing Heap
Memory Allocation Method of Lightweight JavaScript
Engine in IoT Devices”, Proceedings of the 2016 Winter
Conference of the Information Science Society, 2016

SUMMARY

An object of the present disclosure is to save memory
through address compression and prevent latency by pre-
venting an increase in the number of memory accesses
during the address compression, in a dynamic segment
allocation to provide a resizable JavaScript heap so that a
JavaScript application and other external libraries may oper-
ate together in a microcontroller (MCU).

Other objects of the present disclosure that are not speci-
fied herein may be further considered within the scope that
may be easily inferred from the following detailed descrip-
tion and effects thereof.

According to an embodiment of the present disclosure, a
method of compressing an address includes receiving an
input of a full address including a first part and a second part;
checking a segment base address based on the first part in a
previously stored reverse map cache (RMC); obtaining a
block offset based on the segment base address and the
second part; and outputting a compressed address by com-
pressing the first part and the second part, respectively, based
on the segment base address and the block offset.

The RMC may be a software cache that stores a reverse
map entry for a recently accessed segment, and stores
mapped data of a recently accessed segment index and the
segment base address.

The checking of the segment base address may include
extracting a corresponding cache index from the RMC based
on the first part; accessing the reverse map entry in the RMC
using the corresponding cache index and checking whether
the segment base address of the corresponding reverse map
entry matches the first part; and if the segment base address
of the corresponding reverse map entry matches the first
part, extracting a segment index matching the corresponding
segment base address, and if the segment base address of the
corresponding reverse map entry does not match the first
part, checking the segment index based on the reverse map
tree (RMT).

The RMT may be a red-black tree that sorts reverse map
entries with respect to a segment base index.

The RMT may be updated when a segment is allocated or
deallocated.

According to an embodiment of the present disclosure, an
apparatus for compressing an address includes an input unit
configured to receive an input of a full address including a
first part and a second part; a storage unit storing a reverse
map cache (RMC); and a control unit configured to check a
segment base address based on the first part in the RMC,
obtain a block offset based on the segment base address and
the second part, and output a compressed address by com-

US 11,650,918 B2

3

pressing the first part and the second part, respectively, based
on the segment base address and the block offset.

The storage unit may further store a reverse map tree
(RMT), and the control unit may extract a corresponding
cache index from the RMC based on the first part, access the
reverse map entry in the RMC using the corresponding
cache index and check whether the segment base address of
the corresponding reverse map entry matches the first part,
if the segment base address of the corresponding reverse
map entry matches the first part, extract a segment index
matching the corresponding segment base address, and if the
segment base address of the corresponding reverse map
entry does not match the first part, check the segment index
based on the RMT.

The full address may be a full-bitwidth address of a
segment allocated to a memory, and the memory may
include a heap separated into a plurality of segments and a
plurality of libraries separated by the segments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a diagram illustrating a memory area in a static
memory allocation method of the JavaScript engine, and
FIG. 1B is a diagram illustrating a memory area in a
dynamic memory allocation method of the JavaScript
engine;

FIG. 2 is a diagram schematically showing the configu-
ration of a dynamic memory allocation system of a
JavaScript engine according to an embodiment of the pres-
ent disclosure;

FIG. 3 is a block diagram illustrating the structure of an
apparatus for compressing an address according to another
embodiment of the present disclosure;

FIG. 4 is a flowchart illustrating a method of compressing
an address according to another embodiment of the present
disclosure;

FIG. 5 is a diagram illustrating a method of compressing
according to an embodiment of the present disclosure;

FIG. 6 is a graph illustrating an improvement in user
memory size of an engine by using a compression method
according to an embodiment of the present disclosure;

FIGS. 7A and 7B are graphs illustrating a hit ratio and a
miss penalty of a reverse map cache (RMC) according to an
embodiment of the present disclosure; and

FIGS. 8A to 8C are graphs illustrating average compres-
sion cycles for the RMC size according to an embodiment of
the present disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Since the present disclosure may have various changes
and have various embodiments, specific embodiments are
illustrated in the drawings and described in detail in the
detailed description. However, this is not intended to limit
the present disclosure to specific embodiments, and it should
be understood that all modifications, equivalents and sub-
stitutes included in the spirit and scope of the present
disclosure are included. In describing each figure, like
reference numerals have been used for like elements.

The terms used in the present application are only used to
describe specific embodiments, and are not intended to limit
the present disclosure. The singular expression includes the
plural expression unless the context clearly dictates other-
wise. In the present application, terms such as “comprise” or
“have” are intended to designate that a feature, number, step,
operation, component, part, or combination thereof

20

30

40

45

50

60

4

described in the specification exists, but it should be under-
stood that the terms do not preclude the possibility of
addition or existence of one or more other features or
numbers, steps, operations, components, parts, or combina-
tions thereof.

Unless defined otherwise, all terms used herein, including
technical or scientific terms, have the same meaning as
commonly understood by one of ordinary skill in the art to
which the present disclosure belongs. Terms such as those
defined in commonly used dictionaries should be interpreted
as having a meaning consistent with the meaning in the
context of the related art, and should not be interpreted in an
ideally or excessively formal meaning unless explicitly
defined in the present application.

FIG. 2 is a diagram schematically showing the configu-
ration of a dynamic memory allocation system of a
JavaScript engine according to an embodiment of the pres-
ent disclosure.

The dynamic memory allocation system 100 may include
a dynamic segment allocator (DSA) 110, an address trans-
lator 130, and a memory 150.

The DSA 110 is in charge of segment allocation and
deallocation, and manages a segment header table that is
metadata for segment allocation.

The address translator 130 is also called a multi-base
compressed address translator (MBCAT), and is in charge of
conversion between a full-bitwidth address and a low-
bitwidth address.

In an embodiment, the address translator 130 may include
an address decompression unit 132 and an address compres-
sion unit 135.

The address decompression unit 132 receives the low-
bitwidth address and converts the low-bitwidth address into
the full-bitwidth address by using the segment base table.

The address compression unit 135 receives the full-
bitwidth address and converts the full-bitwidth address into
the low-bitwidth address.

The address compression unit 135 may include a reverse
map cache (RMC) and a reverse map tree used for conver-
sion.

The memory 150 may be an SRAM space. The memory
150 may include a heap separated into a plurality of seg-
ments and a plurality of libraries separated by the segments.

A segment base address is allocated at the bottom of the
heap separated into the segments.

FIG. 3 is a block diagram illustrating the structure of an
apparatus for compressing an address according to another
embodiment of the present disclosure, and FIG. 4 is a
flowchart illustrating a method of compressing an address
according to another embodiment of the present disclosure.

The apparatus 200 for compressing the address further
includes an input unit 210, a storage unit 220, and a control
unit 230. The elements mentioned here are merely function-
ally divided for convenience of description, and may be
physically integrated.

In step S110, the input unit 210 receives a full address and
transmits the full address to the control unit 230.

The full address includes a first part and a second part. For
example, the full address may be 32 bits. If the full address
is 0000 0000 0000 0010 0010 0111 0000 0000, the first 21
bits may be the first part, and the 22 bits may be the second
part.

The storage unit 220 stores data for compressing the
address.

In an embodiment, the storage unit 220 stores a RMC and
a reverse map tree (RMT).

US 11,650,918 B2

5

The RMC is a software cache that stores a reverse map
entry for a recently accessed segment, and stores mapped
data of a recently accessed segment index and a segment
base address. The reverse map entry includes a segment
index pair of the segment base address.

The RMT is a red-black tree that sorts reverse map entries
with respect to a segment base index.

For reference, the red-black tree is a self-balancing binary
search tree, and is a typical data structure used to implement
an associative array.

The RMT is updated when a segment is allocated or
deallocated.

The control unit 230 converts the full address input
through the input unit 210 into a compressed address and
outputs the converted address.

In step S120, the control unit 230 checks the segment base
address from the RMC stored in the storage unit 220 based
on the first part.

In an embodiment, the control unit 230 extracts a corre-
sponding cache index from the RMC based on the first part,
accesses the reverse map entry in the RMC using the
corresponding cache index, checks whether the segment
base address of the corresponding reverse map entry
matches the first part, if matched, extracts a segment index
matching the corresponding segment base address, and if not
matched, checks the segment index based on the RMT.

In step S130, a block offset is obtained based on the
segment base address and the second part. Since blocks are
allocated using a first-fit method, allocation and deallocation
that occur at similar times increase the possibility of access-
ing the same segment.

In an embodiment, the block offset is obtained based on
a difference between the second part of the full address and
the segment base address.

In step s140, the full address may be converted into a
compressed address by compressing the first part and the
second part, respectively, based on the segment base address
and the block offset.

A block offset is obtained based on a difference between
the second part of a next full address and the segment base
address. The second part is compressed with the obtained
block offset.

Through this, the compressed address including the com-
pressed first part and the compressed second part is output.

Hereinafter, an embodiment of the method of compress-
ing the address described with reference to FIGS. 3 and 4
will be described in detail.

FIG. 5 is a diagram illustrating a method of compressing
according to an embodiment of the present disclosure.

When a full address is input, an apparatus for compressing
the address performs a segment identification operation to
identify a segment to which a full-bitwidth address belongs.
The full address is a full-bitwidth address, and may be 32
bits, but is not limited thereto.

After identifying a segment, the apparatus obtains a
segment index and a segment base address of the corre-
sponding segment.

The segment identification operation largely proceeds in
two steps. First, the apparatus accesses a reverse map entry
of a recently accessed segment through a RMC.

The apparatus compares a first part of the full-bitwidth
address with the RMC, and when a hit occurs, identifies the
segment using the corresponding reverse map entry.

More specifically, in order to compare the first part of the
full-bitwidth address with the RMC, the apparatus modu-
larizes the first part according to the RMC size. In an
embodiment with reference to FIG. 5, the first part is

10

15

20

25

30

35

40

45

50

55

60

65

6

modularized to 4. According to modularization, the appara-
tus checks a matching cache index and a mapped segment
base address.

In an embodiment with reference to FIG. 5, the apparatus
may check the segment base address ‘0x00022600° with
respect to the full address 0x00022700, and a cache hit
occurs and thus, compress the first part to the segment index
‘5=0000 0101 matching the segment base address
‘0x00022600°.

However, when a miss of the RMC occurs because there
is no segment base address in which a difference between the
first part and the segment base address stored in the RMC is
within the segment size, the apparatus obtains the reverse
map entry from the RMT and identifies the segment using
the reverse map entry.

As described above, without performing a linear search
on the reverse map, the apparatus identifies the segment
using the RMC for recently stored data with high frequency,
and when the segment is not identified using the RMC, uses
the reverse map tree, thereby reducing memory access, and
accordingly, greatly reducing latency of the address com-
pression operation.

In other words, the RMC is a software cache for the
reverse map entry. In the segment identification operation,
the cache index is extracted from the first part of the full
address, and the reverse map entry in the RMC is accessed
using the corresponding cache index. Thereafter, the first
part of the full address is compared with the segment base
address on the reverse map entry to identify whether the
reverse map entry points to a segment of the full address. A
hit of the RMC occurs if the reverse map entry points to the
target segment, otherwise a miss occurs. When the miss with
the RMC occurs, a reverse map entry at a position of the
cache index of the RMC is updated. If the JavaScript
application has locality to access only a specific segment, the
effect of reducing latency of many address compression
operations may increase.

The RMT is a red-black tree for reverse map entries, and
the reverse map entries are sorted with respect to the
segment-base index. The RMT is updated when a new
segment is allocated or when a segment is deallocated.

When the number of segments is N, assuming that the
linear search is performed on the reverse map, access
complexity of N reverse map memory occurs when per-
forming the linear search, whereas, (1) complexity occurs
when a hit occurs in the RMC by applying address com-
pression optimization, and log N complexity occurs when
the RMT is accessed due to a miss occurring in the RMC.

FIG. 6 is a graph illustrating an improvement in user
memory size of an engine by using a compression method
according to an embodiment of the present disclosure.

FIG. 6 shows an average user memory size in three cases
when respectively executed on the SunSpider Benchmark,
the V8 benchmark, and Raspberry Pi 3 for three actual user
size examples. Here, the three cases include a case where
static heap reservation (SHR) and CA are used, a case where
CA is not used and dynamic segment allocation (DSA) is
used, and a case where CA and DSA are simultaneously
used. Here, it is assumed that the heap size is 128 KB.

As can be seen with reference to FIG. 6, when SHR and
CA are used, an average memory space of 130 KB is used,
whereas, when CA and DSA are simultaneously used, an
average memory space smaller by 43.9% is used.

When both CA and DSA are used, the latency of address
compression may worsen. In the related art, when CA and
SHR are used, address compression cycles are 65, but if
DSA is applied without other optimizations, the address

US 11,650,918 B2

7

compression cycles increase by 7.4 times, which requires
average cycles of 483. Applying the RMT reduces overhead
by an average of 32%, which reduces the address compres-
sion cycles to 327. In the case of the RMC, as the size of the
RMC increases, because a hit ratio also increases, the
address compression cycles are reduced. When RMC which
has a size of 16 and is direct mapping cache is applied with
the RMT, the overhead is further reduced by an average of
36%, which reduces the address compression cycles to 210.

When both CA and DSA are applied to a lightweight
JavaScript engine, the average user memory size of the
JavaScript engine is significantly reduced compared to other
cases.

In the related art, when the lightweight JavaScript engine
uses CA and SHR, a large amount of contiguous physical
memory space has to be reserved for the JavaScript heap
even if the data block size is small.

The method of compressing the address according to an
embodiment of the present disclosure may be effectively
used in a microprocessor-based IoT apparatus. By utilizing
the present disclosure, an address compression overhead that
occurs when the lightweight JavaScript engine and external
libraries are used simultaneously on a microprocessor may
be reduced, and the execution time of the JavaScript appli-
cation may be reduced.

FIGS. 7A and 7B are graphs illustrating a hit ratio and a
miss penalty of a RMC according to an embodiment of the
present disclosure.

FIG. 7A is a graph showing the hit ratio (y-axis) of the
RMC with respect to the size (x-axis) of the RMC according
to an embodiment of the present disclosure, and FIG. 7B is
a graph showing the miss penalty (y-axis) with respect to the
RMC size (x-axis) according to an embodiment of the
present disclosure.

When the RMC is used for the Sun Spider benchmark in
the lightweight JavaScript engine, locality for segments is
high. FIG. 7A shows values measured for three workloads
constituting the Sun Spider benchmark, and it may be seen
that the larger the size, the higher the hit ratio for each
workload. Even if the RMC size is set to only 4 to 8, a
compression latency is reduced by 30%, and if the RMC size
is further increased, the compression latency may be reduced
by 40%.

FIGS. 8A to 8C are graphs illustrating average compres-
sion cycles for the RMC size according to an embodiment of
the present disclosure.

Referring to FIGS. 8A to 8C, it may be seen that the
adoption of the RMC in a lightweight JavaScript engine
target is effective in reducing the compression latency.

As described above, according to the embodiments of the
present disclosure, it is possible to reduce the address
compression overhead that occurs when the lightweight
JavaScript engine and external libraries are used simultane-
ously on the microprocessor, and reduce the execution time
of the JavaScript application program.

Even if it is an effect not explicitly mentioned herein, the
effects described in the following specification expected by
the technical features of the present disclosure and potential
effects thereof are treated as if they are described in the
specification of the present disclosure.

The operation according to an embodiment of the present
disclosure may be implemented in the form of program
instructions that can be executed through various computer
means and recorded in a computer-readable medium. The
computer-readable medium represents any medium that
participates in providing instructions to a processor for
execution. The computer-readable medium may include

10

15

20

25

30

35

40

45

50

55

60

65

8

program instructions, data files, data structures, or a com-
bination thereof. For example, the computer-readable
medium may be a magnetic medium, an optical recording
medium, a memory, etc. A computer program may be
distributed over a networked computer system so that a
computer readable code is stored and executed in a distrib-
uted manner. Functional programs, codes, and code seg-
ments for implementing the present embodiment may be
easily inferred by programmers in the art to which the
present embodiment belongs.

The above description is merely illustrative of the tech-
nical idea of the present disclosure, and a person of ordinary
skill in the art to which the present disclosure pertains may
make various modifications and variations without departing
from the essential characteristics of the present disclosure.
Accordingly, the embodiments implemented in the present
disclosure are not intended to limit the technical spirit of the
present disclosure, but to explain, and the scope of the
technical spirit of present disclosure is not limited by these
embodiments. The protection scope of the present disclosure
should be interpreted by the following claims, and all
technical ideas within the scope equivalent thereto should be
construed as being included in the scope of the present
disclosure.

What is claimed is:

1. A method of compressing an address, the method
comprising:

receiving an input of a full address including a first part

and a second part;

checking a segment base address based on the first part in

a previously stored reverse map cache (RMC);
obtaining a block offset based on the segment base
address and the second part; and

outputting a compressed address by compressing the first

part and the second part, respectively, based on the
segment base address and the block offset.

2. The method of claim 1, wherein the RMC is a software
cache that stores a reverse map entry for a recently accessed
segment, and stores mapped data of a recently accessed
segment index and the segment base address.

3. The method of claim 2, wherein the checking of the
segment base address includes:

extracting a corresponding cache index from the RMC

based on the first part;

accessing the reverse map entry in the RMC using the

corresponding cache index and checking whether the
segment base address of the corresponding reverse map
entry matches the first part; and

if the segment base address of the corresponding reverse

map entry matches the first part, extracting a segment
index matching the corresponding segment base
address, and if the segment base address of the corre-
sponding reverse map entry does not match the first
part, checking the segment index based on the reverse
map tree (RMT).

4. The method of claim 3, wherein the RMT is a red-black
tree that sorts reverse map entries with respect to a segment
base index.

5. The method of claim 4, wherein the RMT is updated
when a segment is allocated or deallocated.

6. An apparatus for compressing an address, the apparatus
comprising:

an input unit configured to receive an input of a full

address including a first part and a second part;

a storage unit storing a reverse map cache (RMC); and

a control unit configured to check a segment base address

based on the first part in the RMC, obtain a block offset

US 11,650,918 B2

9 10
based on the segment base address and the second part, matches the first part, extract a segment index matching
and output a compressed address by compressing the the corresponding segment base address, and if the
first part and the second part, respectively, based on the segment base address of the corresponding reverse map
segment base address and the block offset. entry does not match the first part, check the segment

7. The apparatus of claim 6, wherein the RMC is a 5 index based on the RMT.
software cache that stores a reverse map entry for a recently 9. The apparatus of claim 8, wherein the RMT is a

accessed segment, and stores mapped data of a recently
accessed segment index and the segment base address.
8. The apparatus of claim 7,
wherein the storage unit is further configured to store a 10
reverse map tree (RMT), and
wherein the control unit is further configured to extract a
corresponding cache index from the RMC based on the
first part, access the reverse map entry in the RMC
using a corresponding cache index and check whether 15
the segment base address of the corresponding reverse
map entry matches the first part, if the segment base
address of the corresponding reverse map entry L

red-black tree that sorts reverse map entries with respect to
a segment base index.
10. The apparatus of claim 8, wherein the RMT is updated
when a segment is allocated or deallocated.
11. The apparatus of claim 6,
wherein the full address is a full-bitwidth address of a
segment allocated to a memory, and
wherein the memory includes a heap separated into a
plurality of segments and a plurality of libraries sepa-
rated by the segments.

